Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/138
DC FieldValueLanguage
dc.contributor.authorKostić, Aleksandraen_US
dc.contributor.authorPetrović, Zoranen_US
dc.contributor.authorPucanović, Zoran S.en_US
dc.contributor.authorRoslavcev, Majaen_US
dc.date.accessioned2022-08-06T16:26:18Z-
dc.date.available2022-08-06T16:26:18Z-
dc.date.issued2021-01-01-
dc.identifier.issn03081087en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/138-
dc.description.abstractAny square matrix over an algebraically closed field has a Jordan normal form. In this paper, we prove that every infinite upper triangular matrix over an arbitrary field has a generalized infinite Jordan normal form.en
dc.relation.ispartofLinear and Multilinear Algebraen
dc.subject15A03en
dc.subject15A21en
dc.subject15A99en
dc.subjectInfinite-dimensional vector spaceen
dc.subjectJordan cannonical formen
dc.subjectmatrix ringen
dc.titleOn a generalized Jordan form of an infinite upper triangular matrixen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/03081087.2019.1632783-
dc.identifier.scopus2-s2.0-85067860365-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85067860365-
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.description.rankM21en_US
dc.relation.firstpage1534en
dc.relation.lastpage1542en
dc.relation.volume69en
dc.relation.issue8en
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.orcid0009-0000-7578-3693-
crisitem.author.orcid0000-0002-8571-5210-
crisitem.author.orcid0000-0002-6545-421X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

7
checked on Dec 22, 2024

Page view(s)

22
checked on Dec 25, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.