Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/138
DC FieldValueLanguage
dc.contributor.authorKostić, Aleksandraen_US
dc.contributor.authorPetrović, Zoranen_US
dc.contributor.authorPucanović, Zoran S.en_US
dc.contributor.authorRoslavcev, Majaen_US
dc.date.accessioned2022-08-06T16:26:18Z-
dc.date.available2022-08-06T16:26:18Z-
dc.date.issued2021-01-01-
dc.identifier.issn03081087en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/138-
dc.description.abstractAny square matrix over an algebraically closed field has a Jordan normal form. In this paper, we prove that every infinite upper triangular matrix over an arbitrary field has a generalized infinite Jordan normal form.en
dc.relation.ispartofLinear and Multilinear Algebraen
dc.subject15A03en
dc.subject15A21en
dc.subject15A99en
dc.subjectInfinite-dimensional vector spaceen
dc.subjectJordan cannonical formen
dc.subjectmatrix ringen
dc.titleOn a generalized Jordan form of an infinite upper triangular matrixen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/03081087.2019.1632783-
dc.identifier.scopus2-s2.0-85067860365-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85067860365-
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.description.rankM21en_US
dc.relation.firstpage1534en
dc.relation.lastpage1542en
dc.relation.volume69en
dc.relation.issue8en
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.orcid0009-0000-7578-3693-
crisitem.author.orcid0000-0002-8571-5210-
crisitem.author.orcid0000-0002-6545-421X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

7
checked on Mar 31, 2025

Page view(s)

23
checked on Jan 19, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.