Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1389
DC FieldValueLanguage
dc.contributor.authorMarinković, Aleksandraen_US
dc.date.accessioned2024-11-20T12:19:38Z-
dc.date.available2024-11-20T12:19:38Z-
dc.date.issued2023-08-01-
dc.identifier.issn01399918-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1389-
dc.descriptionMarinković, Aleksandra. "Examples of Weinstein Domains in the Complement of Smoothed Total Toric Divisors" Mathematica Slovaca, vol. 73, no. 4, 2023, pp. 997-1012. https://doi.org/10.1515/ms-2023-0074en_US
dc.description.abstractIn [ACG+1] and [ACG+2], it is shown that a complement of a neighborhood of a partially smoothed total toric divisor of a closed toric symplectic 4-manifold is a Weinstein domain. In this article, we extend the family of Weinstein domains that can be realized as such complements by producing an infinite family of new examples.en_US
dc.language.isoenen_US
dc.publisherDe Gruyteren_US
dc.relation.ispartofMathematica Slovacaen_US
dc.subjectalmost toric manifoldsen_US
dc.subjectToric symplectic manifoldsen_US
dc.subjectWeinstein domainsen_US
dc.titleExamples of Weinstein Domains in the Complement of Smoothed Total Toric Divisorsen_US
dc.typeArticleen_US
dc.identifier.doi10.1515/ms-2023-0074-
dc.identifier.scopus2-s2.0-85168132376-
dc.identifier.isi001043701900015-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85168132376-
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.issn1337-2211en_US
dc.description.rankM21en_US
dc.relation.firstpage997en_US
dc.relation.lastpage1012en_US
dc.relation.volume73en_US
dc.relation.issue4en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextrestricted-
item.openairetypeArticle-
crisitem.author.deptMathematical Analysis-
crisitem.author.orcid0009-0003-5513-8576-
Appears in Collections:Research outputs
Files in This Item:
File Description SizeFormat Existing users please
examples-AM.pdf318.3 kBAdobe PDF
    Request a copy
Show simple item record

Page view(s)

16
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.