Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1382
DC FieldValueLanguage
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2024-11-07T13:45:31Z-
dc.date.available2024-11-07T13:45:31Z-
dc.date.issued2024-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1382-
dc.description.abstractLet G be an n-vertex graph having an eigenvalue µ of multiplicity k. A star complement for µ in G is an induced subgraph H with n − k vertices, such that µ is not its eigenvalue. In the case when H is a t-vertex cycle Ct with t ≥ 3, it is shown that G is regular if and only if µ ∈ {3, 1, 0, −1, −2}. For µ = 3 and µ = 1, G is the complete graph K4 and the Petersen graph, respectively. For µ ∈ {0, −1}, a structural characterization of infinite families of graphs that appear in the role of G is given,and their existence is shown. The obtained results, together with the result of [F. K. Bell, Linear Algebra Appl. 296 (1999) 15–25] concerning µ = −2, establish a complete characterization of regular graphs having Ct as a star complement for some eigenvalueen_US
dc.language.isoenen_US
dc.publisherShahin Digital Publisheren_US
dc.relation.ispartofDiscrete Mathematics Lettersen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subjectAdjacency matrixen_US
dc.subjectStar complementen_US
dc.subjectRegular graphen_US
dc.subjectcirculant graphen_US
dc.subjectinverseen_US
dc.titleRegular graphs with a cycle as a star complementen_US
dc.typeTexten_US
dc.identifier.doi10.47443/dml.2024.141-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.issn2664-2557en_US
dc.relation.firstpage70en_US
dc.relation.lastpage76en_US
dc.relation.volume14en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeText-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Files in This Item:
File Description SizeFormat
DML24_v14_pp70-76.pdf379.84 kBAdobe PDF
View/Open
Show simple item record

Page view(s)

7
checked on Nov 15, 2024

Download(s)

6
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons