Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1369
DC FieldValueLanguage
dc.contributor.authorJovanović, Božidaren_US
dc.contributor.authorŠukilović, Tijanaen_US
dc.contributor.authorVukmirović, Srđanen_US
dc.date.accessioned2024-10-23T12:06:22Z-
dc.date.available2024-10-23T12:06:22Z-
dc.date.issued2023-01-01-
dc.identifier.issn15603547-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1369-
dc.description.abstractIn 1983 Bogoyavlenski conjectured that, if the Euler equations on a Lie algebra g are integrable, then their certain extensions to semisimple lie algebras g related to the filtrations of Lie algebras (Formula presented.)are integrable as well.In particular, by taking g0={0} and natural filtrations of so(n) and u(n), we haveGel’fand – Cetlin integrable systems. We prove the conjecturefor filtrations of compact Lie algebras g: the system is integrable in a noncommutative sense by means of polynomial integrals. Various constructions of complete commutative polynomial integrals for the system are also given.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofRegular and Chaotic Dynamicsen_US
dc.subjectGel’fand – Cetlin systemsen_US
dc.subjectinvariant polynomialsen_US
dc.subjectnoncommutative integrabilityen_US
dc.titleIntegrable Systems Associated to the Filtrations of Lie Algebrasen_US
dc.typeArticleen_US
dc.identifier.doi10.1134/S1560354723010045-
dc.identifier.scopus2-s2.0-85178491057-
dc.identifier.isi000948836000004-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85178491057-
dc.contributor.affiliationGeometryen_US
dc.contributor.affiliationGeometryen_US
dc.relation.issn1560-3547en_US
dc.description.rankM22en_US
dc.relation.firstpage44en_US
dc.relation.lastpage61en_US
dc.relation.volume28en_US
dc.relation.issue1en_US
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-5135-869X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 14, 2024

Page view(s)

5
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.