Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1369
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jovanović, Božidar | en_US |
dc.contributor.author | Šukilović, Tijana | en_US |
dc.contributor.author | Vukmirović, Srđan | en_US |
dc.date.accessioned | 2024-10-23T12:06:22Z | - |
dc.date.available | 2024-10-23T12:06:22Z | - |
dc.date.issued | 2023-01-01 | - |
dc.identifier.issn | 15603547 | - |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1369 | - |
dc.description.abstract | In 1983 Bogoyavlenski conjectured that, if the Euler equations on a Lie algebra g are integrable, then their certain extensions to semisimple lie algebras g related to the filtrations of Lie algebras (Formula presented.)are integrable as well.In particular, by taking g0={0} and natural filtrations of so(n) and u(n), we haveGel’fand – Cetlin integrable systems. We prove the conjecturefor filtrations of compact Lie algebras g: the system is integrable in a noncommutative sense by means of polynomial integrals. Various constructions of complete commutative polynomial integrals for the system are also given. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Regular and Chaotic Dynamics | en_US |
dc.subject | Gel’fand – Cetlin systems | en_US |
dc.subject | invariant polynomials | en_US |
dc.subject | noncommutative integrability | en_US |
dc.title | Integrable Systems Associated to the Filtrations of Lie Algebras | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1134/S1560354723010045 | - |
dc.identifier.scopus | 2-s2.0-85178491057 | - |
dc.identifier.isi | 000948836000004 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85178491057 | - |
dc.contributor.affiliation | Geometry | en_US |
dc.contributor.affiliation | Geometry | en_US |
dc.relation.issn | 1560-3547 | en_US |
dc.description.rank | M22 | en_US |
dc.relation.firstpage | 44 | en_US |
dc.relation.lastpage | 61 | en_US |
dc.relation.volume | 28 | en_US |
dc.relation.issue | 1 | en_US |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Geometry | - |
crisitem.author.orcid | 0000-0002-5135-869X | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
1
checked on Nov 14, 2024
Page view(s)
5
checked on Nov 15, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.