Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1350
DC FieldValueLanguage
dc.contributor.authorBelardo, Francescoen_US
dc.contributor.authorStanić, Zoranen_US
dc.contributor.authorZaslavsky, Thomasen_US
dc.date.accessioned2024-10-02T10:49:55Z-
dc.date.available2024-10-02T10:49:55Z-
dc.date.issued2023-01-01-
dc.identifier.issn18553966-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1350-
dc.description.abstractThe total graph is built by joining the graph to its line graph by means of the incidences. We introduce a similar construction for signed graphs. Under two similar definitions of the line signed graph, we define the corresponding total signed graph and we show that it is stable under switching. We consider balance, the frustration index and frustration number, and the largest eigenvalue. In the regular case we compute the spectrum of the adjacency matrix of the total graph and the spectra of certain compositions, and we determine some with exactly two main eigenvalues.en_US
dc.language.isoenen_US
dc.publisherKoper : University of Primorskaen_US
dc.relation.ispartofArs Mathematica Contemporaneaen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subjectBidirected graphen_US
dc.subjectCartesian product graphen_US
dc.subjectgraph eigenvaluesen_US
dc.subjectregular signed graphen_US
dc.subjectsigned line graphen_US
dc.subjectsigned total graphen_US
dc.titleTotal graph of a signed graphen_US
dc.typeArticleen_US
dc.identifier.doi10.26493/1855-3974.2842.6b5-
dc.identifier.scopus2-s2.0-85134018324-
dc.identifier.isi000892434600004-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85134018324-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.issn1855-3966en_US
dc.description.rankM22en_US
dc.relation.firstpageArticle no. #P1.02en_US
dc.relation.volume23en_US
dc.relation.issue1en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Files in This Item:
File Description SizeFormat
admin,+amc_2842-2.pdf420.04 kBAdobe PDF
View/Open
Show simple item record

SCOPUSTM   
Citations

7
checked on Nov 15, 2024

Page view(s)

11
checked on Nov 15, 2024

Download(s)

1
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons