Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1340
DC FieldValueLanguage
dc.contributor.authorLiu, Muhuoen_US
dc.contributor.authorChen, Chaohuien_US
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2024-08-26T10:07:48Z-
dc.date.available2024-08-26T10:07:48Z-
dc.date.issued2024-01-01-
dc.identifier.issn01956698-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1340-
dc.description.abstractConnected graphs whose second largest eigenvalue λ2 does not exceed 1 have been investigated in the last four decades. Over the years only few particular classes with this spectral property are completely determined. For example, they include bipartite graphs, line graphs and threshold graphs. In this paper we determine all connected (K4−e)-free graphs, i.e., the graphs that do not contain an induced subgraph isomorphic to the graph obtained by removing an edge from the complete graph of order 4; such graphs are also called diamond-free graphs. Since every triangle-free graph is automatically diamond-free, our results includes all triangle-free graphs with λ2≤1. Moreover, it includes all connected bipartite graphs with the same spectral property, and therefore strengthens the result of Petrović (J. Combin. Theory B, 1991).en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofEuropean Journal of Combinatoricsen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.titleConnected (K<inf>4</inf>−e)-free graphs whose second largest eigenvalue does not exceed 1en_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ejc.2023.103775-
dc.identifier.scopus2-s2.0-85167450294-
dc.identifier.isi001063057700001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85167450294-
dc.relation.issn0195-6698en_US
dc.description.rankM22en_US
dc.relation.firstpageArticle no. 103775en_US
dc.relation.volume115en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextembargo_20260201-
item.openairetypeArticle-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Files in This Item:
File Description SizeFormat Existing users please
SecondLargest1FIN.pdf271.79 kBAdobe PDF
Embargoed until February 1, 2026    Request a copy
Show simple item record

SCOPUSTM   
Citations

1
checked on Dec 19, 2024

Page view(s)

21
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons