Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/133
DC FieldValueLanguage
dc.contributor.authorKatić, Jelenaen_US
dc.contributor.authorMilinković, Darkoen_US
dc.contributor.authorNikolić, Jovanaen_US
dc.date.accessioned2022-08-06T16:11:14Z-
dc.date.available2022-08-06T16:11:14Z-
dc.date.issued2017-08-01-
dc.identifier.issn09262245en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/133-
dc.description.abstractWe define and investigate spectral invariants for Floer homology HF(H,U:M) of an open subset U⊂M in T⁎M, defined by Kasturirangan and Oh as a direct limit of Floer homologies of approximations. We define a module structure product on HF(H,U:M) and prove the triangle inequality for invariants with respect to this product. We also prove the continuity of these invariants and compare them with spectral invariants for the periodic orbits case in T⁎M.en
dc.relation.ispartofDifferential Geometry and its Applicationen
dc.subjectFloer homologyen
dc.subjectLagrangian submanifoldsen
dc.subjectSpectral invariantsen
dc.titleSpectral invariants in Lagrangian Floer homology of open subseten_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.difgeo.2017.05.009-
dc.identifier.scopus2-s2.0-85030454900-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85030454900-
dc.contributor.affiliationDifferential Equationsen_US
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.firstpage220en
dc.relation.lastpage267en
dc.relation.volume53en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptMathematical Analysis-
crisitem.author.orcid0000-0001-8927-0506-
crisitem.author.orcid0009-0009-9752-9894-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

6
checked on Nov 11, 2024

Page view(s)

10
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.