Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1339
DC FieldValueLanguage
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2024-08-26T09:33:29Z-
dc.date.available2024-08-26T09:33:29Z-
dc.date.issued2024-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1339-
dc.description.abstractFor every oriented graph G′, there exists a bipartite signed graph Ḣ such that the spectrum of Ḣ contains the full information about the spectrum of the skew adjacency matrix of G′. This allows us to transfer some problems concerning the skew eigenvalues of oriented graphs to the framework of signed graphs, where the theory of real symmetric matrices can be employed. In this paper, we continue the previous research by relating the characteristic polynomials, eigenspaces and the energy of G′ to those of Ḣ. Simultaneously, we address some open problems concerning the skew eigenvalues of oriented graphs.en_US
dc.language.isoenen_US
dc.publisherKoper : University of Primorskaen_US
dc.relation.ispartofArs Mathematica Contemporaneaen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subjectoriented graphen_US
dc.subjectsigned graphen_US
dc.subjecteigenvaluesen_US
dc.subjectcharacteristic polynomialen_US
dc.subjecteigenspacesen_US
dc.subjectenergyen_US
dc.titleSpectra of signed graphs and related oriented graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.26493/1855-3974.3227.fd5-
dc.relation.issn1855-3974en_US
dc.description.rankM22en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Files in This Item:
File Description SizeFormat
amc_3227.pdf404.49 kBAdobe PDF
View/Open
Show simple item record

Page view(s)

11
checked on Nov 15, 2024

Download(s)

11
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons