Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1328
DC FieldValueLanguage
dc.contributor.authorChen, Bang Yenen_US
dc.contributor.authorĐorić, Milošen_US
dc.contributor.authorĐorić, Mirjanaen_US
dc.date.accessioned2024-08-13T08:31:38Z-
dc.date.available2024-08-13T08:31:38Z-
dc.date.issued2024-01-01-
dc.identifier.issn16605446-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1328-
dc.description.abstractWe establish that if the soliton vector field is the Reeb vector field, then a hypersurface of a nearly Kähler manifold is a quasi-Yamabe soliton if and only if it is a Yamabe soliton. We prove that if a hypersurface of an arbitrary nearly Kähler manifold admits a (quasi)-Yamabe soliton with the Reeb vector field as a soliton vector field, then its scalar curvature is constant and its Reeb flow is isometric, and conversely. Also, such a hypersurface is a Hopf hypersurface. Furthermore, we give a complete classification of such solitons when the ambient manifold is a certain nearly Kähler manifold (six-dimensional unit sphere, product of two three-dimensional unit spheres), a complex space form, and a complex quadric.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofMediterranean Journal of Mathematicsen_US
dc.subjectcomplex quadricen_US
dc.subjectcomplex space formen_US
dc.subjectconstant scalar curvatureen_US
dc.subjectHopf hypersurfaceen_US
dc.subjectnearly Kähler manifolden_US
dc.subjectquasi-Yamabe solitonen_US
dc.subjectReeb vector fielden_US
dc.subjectYamabe solitonen_US
dc.titleQuasi-Yamabe and Yamabe Solitons on Hypersurfaces of Nearly Kähler Manifoldsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00009-023-02546-4-
dc.identifier.scopus2-s2.0-85177592572-
dc.identifier.isi001107287200001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85177592572-
dc.contributor.affiliationGeometryen_US
dc.relation.issn1660-5446en_US
dc.description.rankM21en_US
dc.relation.firstpageArticle no. 10en_US
dc.relation.volume21en_US
dc.relation.issue1en_US
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0001-5462-5522-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 9, 2024

Page view(s)

27
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.