Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1321
DC FieldValueLanguage
dc.contributor.authorPetković, Marko D.en_US
dc.contributor.authorKrstić, Mihailo A.en_US
dc.contributor.authorRajković, Kostadin P.en_US
dc.date.accessioned2024-08-05T13:09:44Z-
dc.date.available2024-08-05T13:09:44Z-
dc.date.issued2018-12-15-
dc.identifier.issn03770427-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1321-
dc.description.abstractWe present a general scheme for the construction of new efficient generalized Schultz iterative methods for computing the inverse matrix and various matrix generalized inverses. These methods have the form Xk+1=Xkp(AXk), where A is m×n complex matrix and p(x) is a polynomial. The construction procedure is general and can be applied to any number of matrix multiplications per iteration, denoted by θ. We use it to construct new methods for θ=6 matrix multiplications per iteration having (up to now) the highest computational efficiency among all other known methods. They are compared to several existing ones on a series of numerical tests. Finally, the numerical instability and the influence of roundoff errors is studied for an arbitrary generalized Schultz iterative method. These results are applicable to all considered new and existing particular iterative methods.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofJournal of Computational and Applied Mathematicsen_US
dc.subjectConvergenceen_US
dc.subjectDrazin inverseen_US
dc.subjectHyper-power methodsen_US
dc.subjectIterative methodsen_US
dc.subjectMoore–Penrose inverseen_US
dc.subjectOuter inverseen_US
dc.titleRapid generalized Schultz iterative methods for the computation of outer inversesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.cam.2018.05.048-
dc.identifier.scopus2-s2.0-85048880853-
dc.identifier.isi000440394900038-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85048880853-
dc.relation.issn0377-0427en_US
dc.description.rankM21en_US
dc.relation.firstpage572en_US
dc.relation.lastpage584en_US
dc.relation.volume344en_US
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

8
checked on Dec 20, 2024

Page view(s)

8
checked on Dec 25, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.