Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1316
DC FieldValueLanguage
dc.contributor.authorKocić, Đorđeen_US
dc.date.accessioned2024-07-12T13:15:30Z-
dc.date.available2024-07-12T13:15:30Z-
dc.date.issued2023-01-01-
dc.identifier.issn03545180-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1316-
dc.description.abstractThe study of hypersurfaces of almost Hermitian manifolds by means of their Jacobi operators has been highly active in recent years. Specially, many recent results answer the question of the existence of hypersurfaces with a structure Jacobi operator that satisfies conditions related to their parallelism. We investigate real hypersurfaces in nearly Kähler sphere S6 (1) whose Lie derivative of structure Jacobi operator coincides with the covariant derivative of it and show that such submanifolds do not exist.en_US
dc.language.isoenen_US
dc.relation.ispartofFilomaten_US
dc.subjectHopf hypersurfacesen_US
dc.subjectLie derivativeen_US
dc.subjectNearly Kähler manifoldsen_US
dc.subjectReal hypersurfacesen_US
dc.subjectStructure Jacobi operatoren_US
dc.titleReal hypersurfaces in S<sup>6</sup>(1) equipped with structure Jacobi operator satisfying L<inf>X</inf>l = ∇<inf>X</inf>len_US
dc.typeArticleen_US
dc.relation.conferenceThe 21st Geometrical Seminaren_US
dc.identifier.doi10.2298/FIL2325435K-
dc.identifier.scopus2-s2.0-85165002065-
dc.identifier.isi001024370300001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85165002065-
dc.contributor.affiliationGeometryen_US
dc.relation.issn0354-5180en_US
dc.relation.firstpage8435en_US
dc.relation.lastpage8440en_US
dc.relation.volume37en_US
dc.relation.issue25en_US
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0003-2255-2992-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 15, 2024

Page view(s)

12
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.