Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1308
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Andrejić, Vladica | en_US |
dc.date.accessioned | 2024-06-19T11:56:04Z | - |
dc.date.available | 2024-06-19T11:56:04Z | - |
dc.date.issued | 2023-04-01 | - |
dc.identifier.issn | 16605446 | - |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1308 | - |
dc.description | This version of the article is preprint version but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at <a href="https://dx.doi.org/10.1007/s00009-023-02340-2">https://dx.doi.org/10.1007/s00009-023-02340-2</a> | en_US |
dc.description.abstract | Osserman manifolds are a generalization of locally two-point homogeneous spaces. We introduce k-root manifolds in which the reduced Jacobi operator has exactly k eigenvalues. We investigate one-root and two-root manifolds as another generalization of locally two-point homogeneous spaces. We prove that there is no two-root Riemannian manifold of odd dimension. In twice an odd dimension, we describe all two-root Riemannian algebraic curvature tensors and give additional conditions for two-root Riemannian manifolds. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Mediterranean Journal of Mathematics | en_US |
dc.subject | Jacobi operator | en_US |
dc.subject | Locally symmetric space | en_US |
dc.subject | Osserman manifold | en_US |
dc.title | Two-Root Riemannian Manifolds | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s00009-023-02340-2 | - |
dc.identifier.scopus | 2-s2.0-85148087578 | - |
dc.identifier.isi | 000929106300001 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85148087578 | - |
dc.contributor.affiliation | Geometry | en_US |
dc.description.rank | M21 | en_US |
dc.relation.firstpage | Article no. 100 | en_US |
dc.relation.volume | 20 | en_US |
dc.relation.issue | 2 | en_US |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.openairetype | Article | - |
item.grantfulltext | restricted | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Geometry | - |
crisitem.author.orcid | 0000-0003-3288-1845 | - |
Appears in Collections: | Research outputs |
Files in This Item:
File | Description | Size | Format | Existing users please |
---|---|---|---|---|
2009.12834v4.pdf | 206.57 kB | Adobe PDF | Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.