Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1308
DC FieldValueLanguage
dc.contributor.authorAndrejić, Vladicaen_US
dc.date.accessioned2024-06-19T11:56:04Z-
dc.date.available2024-06-19T11:56:04Z-
dc.date.issued2023-04-01-
dc.identifier.issn16605446-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1308-
dc.descriptionThis version of the article is preprint version but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at <a href="https://dx.doi.org/10.1007/s00009-023-02340-2">https://dx.doi.org/10.1007/s00009-023-02340-2</a>en_US
dc.description.abstractOsserman manifolds are a generalization of locally two-point homogeneous spaces. We introduce k-root manifolds in which the reduced Jacobi operator has exactly k eigenvalues. We investigate one-root and two-root manifolds as another generalization of locally two-point homogeneous spaces. We prove that there is no two-root Riemannian manifold of odd dimension. In twice an odd dimension, we describe all two-root Riemannian algebraic curvature tensors and give additional conditions for two-root Riemannian manifolds.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofMediterranean Journal of Mathematicsen_US
dc.subjectJacobi operatoren_US
dc.subjectLocally symmetric spaceen_US
dc.subjectOsserman manifolden_US
dc.titleTwo-Root Riemannian Manifoldsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00009-023-02340-2-
dc.identifier.scopus2-s2.0-85148087578-
dc.identifier.isi000929106300001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85148087578-
dc.contributor.affiliationGeometryen_US
dc.description.rankM21en_US
dc.relation.firstpageArticle no. 100en_US
dc.relation.volume20en_US
dc.relation.issue2en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0003-3288-1845-
Appears in Collections:Research outputs
Files in This Item:
File Description SizeFormat Existing users please
2009.12834v4.pdf206.57 kBAdobe PDF
    Request a copy
Show simple item record

Page view(s)

22
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.