Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1306
DC FieldValueLanguage
dc.contributor.authorKovačević, Anđelkaen_US
dc.contributor.authorIlić, Draganaen_US
dc.contributor.authorPopović, Lukaen_US
dc.contributor.authorAndrić Mitrović, Nikolaen_US
dc.contributor.authorNikolić, Mladenen_US
dc.contributor.authorPavlović, Marina S.en_US
dc.contributor.authorČvorović-Hajdinjak, Ivaen_US
dc.contributor.authorKnežević, Miljanen_US
dc.contributor.authorSavić, Djordje V.en_US
dc.date.accessioned2024-06-19T10:17:11Z-
dc.date.available2024-06-19T10:17:11Z-
dc.date.issued2023-06-01-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1306-
dc.descriptionUniverse, 2023, 9(6) Article no. 287 doi: <a href="https://doi.org/10.3390/universe9060287">10.3390/universe9060287</a>en_US
dc.description.abstractDeep learning techniques are required for the analysis of synoptic (multi-band and multi-epoch) light curves in massive data of quasars, as expected from the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST). In this follow-up study, we introduce an upgraded version of a conditional neural process (CNP) embedded in a multi-step approach for the analysis of large data of quasars in the LSST Active Galactic Nuclei Scientific Collaboration data challenge database. We present a case study of a stratified set of u-band light curves for 283 quasars with very low variability ∼0.03. In this sample, the CNP average mean square error is found to be ∼5% (∼0.5 mag). Interestingly, besides similar levels of variability, there are indications that individual light curves show flare-like features. According to the preliminary structure–function analysis, these occurrences may be associated with microlensing events with larger time scales of 5–10 years.en_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofUniverseen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subjectastronomy data modelingen_US
dc.subjectastrostatistics techniquesen_US
dc.subjectcomputational astronomyen_US
dc.subjecthigh-energy astrophysicsen_US
dc.subjectobservatoriesen_US
dc.subjectoptical observatoriesen_US
dc.subjectquasarsen_US
dc.subjecttime series analysisen_US
dc.titleDeep Learning of Quasar Lightcurves in the LSST Eraen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/universe9060287-
dc.identifier.scopus2-s2.0-85163709690-
dc.identifier.isi001017956900001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85163709690-
dc.contributor.affiliationAstronomyen_US
dc.contributor.affiliationAstronomyen_US
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.contributor.affiliationReal and Complex Analysisen_US
dc.relation.issn2218-1997en_US
dc.description.rankM22en_US
dc.relation.firstpageArticle no. 287en_US
dc.relation.volume9en_US
dc.relation.issue6en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptAstronomy-
crisitem.author.deptAstronomy-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.deptReal and Complex Analysis-
crisitem.author.orcid0000-0001-5139-1978-
crisitem.author.orcid0000-0002-1134-4015-
crisitem.author.orcid0009-0000-4055-1227-
Appears in Collections:Research outputs
Files in This Item:
File Description SizeFormat
universe-09-00287-v2.pdf14.02 MBAdobe PDF
View/Open
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 11, 2024

Page view(s)

11
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons