Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1306
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kovačević, Anđelka | en_US |
dc.contributor.author | Ilić, Dragana | en_US |
dc.contributor.author | Popović, Luka | en_US |
dc.contributor.author | Andrić Mitrović, Nikola | en_US |
dc.contributor.author | Nikolić, Mladen | en_US |
dc.contributor.author | Pavlović, Marina S. | en_US |
dc.contributor.author | Čvorović-Hajdinjak, Iva | en_US |
dc.contributor.author | Knežević, Miljan | en_US |
dc.contributor.author | Savić, Djordje V. | en_US |
dc.date.accessioned | 2024-06-19T10:17:11Z | - |
dc.date.available | 2024-06-19T10:17:11Z | - |
dc.date.issued | 2023-06-01 | - |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1306 | - |
dc.description | Universe, 2023, 9(6) Article no. 287 doi: <a href="https://doi.org/10.3390/universe9060287">10.3390/universe9060287</a> | en_US |
dc.description.abstract | Deep learning techniques are required for the analysis of synoptic (multi-band and multi-epoch) light curves in massive data of quasars, as expected from the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST). In this follow-up study, we introduce an upgraded version of a conditional neural process (CNP) embedded in a multi-step approach for the analysis of large data of quasars in the LSST Active Galactic Nuclei Scientific Collaboration data challenge database. We present a case study of a stratified set of u-band light curves for 283 quasars with very low variability ∼0.03. In this sample, the CNP average mean square error is found to be ∼5% (∼0.5 mag). Interestingly, besides similar levels of variability, there are indications that individual light curves show flare-like features. According to the preliminary structure–function analysis, these occurrences may be associated with microlensing events with larger time scales of 5–10 years. | en_US |
dc.language.iso | en | en_US |
dc.publisher | MDPI | en_US |
dc.relation.ispartof | Universe | en_US |
dc.rights | Attribution 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/us/ | * |
dc.subject | astronomy data modeling | en_US |
dc.subject | astrostatistics techniques | en_US |
dc.subject | computational astronomy | en_US |
dc.subject | high-energy astrophysics | en_US |
dc.subject | observatories | en_US |
dc.subject | optical observatories | en_US |
dc.subject | quasars | en_US |
dc.subject | time series analysis | en_US |
dc.title | Deep Learning of Quasar Lightcurves in the LSST Era | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.3390/universe9060287 | - |
dc.identifier.scopus | 2-s2.0-85163709690 | - |
dc.identifier.isi | 001017956900001 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85163709690 | - |
dc.contributor.affiliation | Astronomy | en_US |
dc.contributor.affiliation | Astronomy | en_US |
dc.contributor.affiliation | Informatics and Computer Science | en_US |
dc.contributor.affiliation | Real and Complex Analysis | en_US |
dc.relation.issn | 2218-1997 | en_US |
dc.description.rank | M22 | en_US |
dc.relation.firstpage | Article no. 287 | en_US |
dc.relation.volume | 9 | en_US |
dc.relation.issue | 6 | en_US |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.openairetype | Article | - |
item.grantfulltext | open | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Astronomy | - |
crisitem.author.dept | Astronomy | - |
crisitem.author.dept | Informatics and Computer Science | - |
crisitem.author.dept | Real and Complex Analysis | - |
crisitem.author.orcid | 0000-0001-5139-1978 | - |
crisitem.author.orcid | 0000-0002-1134-4015 | - |
crisitem.author.orcid | 0009-0000-4055-1227 | - |
Appears in Collections: | Research outputs |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
universe-09-00287-v2.pdf | 14.02 MB | Adobe PDF | View/Open |
SCOPUSTM
Citations
1
checked on Nov 11, 2024
Page view(s)
11
checked on Nov 14, 2024
Google ScholarTM
Check
Altmetric
Altmetric
This item is licensed under a Creative Commons License