Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1305
DC FieldValueLanguage
dc.contributor.authorUljarević, Igoren_US
dc.date.accessioned2024-06-18T12:40:55Z-
dc.date.available2024-06-18T12:40:55Z-
dc.date.issued2023-09-18-
dc.identifier.issn0010437X-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1305-
dc.description.abstractWe prove a contact non-squeezing phenomenon on homotopy spheres that are fillable by Liouville domains with large symplectic homology: there exists a smoothly embedded ball in such a sphere that cannot be made arbitrarily small by a contact isotopy. These homotopy spheres include examples that are diffeomorphic to standard spheres and whose contact structures are homotopic to standard contact structures. As the main tool, we construct a new version of symplectic homology, called selective symplectic homology, that is associated to a Liouville domain and an open subset of its boundary. The selective symplectic homology is obtained as the direct limit of Floer homology groups for Hamiltonians whose slopes tend to on the open subset but remain close to and positive on the rest of the boundary.en_US
dc.language.isoenen_US
dc.publisherCambridge University Pressen_US
dc.relation.ispartofCompositio Mathematicaen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectcontact Floer homologyen_US
dc.subjectcontact non-squeezingen_US
dc.subjectsymplectic homologyen_US
dc.titleSelective symplectic homology with applications to contact non-squeezingen_US
dc.typeArticleen_US
dc.identifier.doi10.1112/S0010437X23007480-
dc.identifier.scopus2-s2.0-85172894881-
dc.identifier.isi001066879300001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85172894881-
dc.contributor.affiliationDifferential Equationsen_US
dc.relation.issn0010-437Xen_US
dc.description.rankM21en_US
dc.relation.firstpage2458en_US
dc.relation.lastpage2482en_US
dc.relation.volume159en_US
dc.relation.issue11en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptDifferential Equations-
Appears in Collections:Research outputs
Files in This Item:
Show simple item record

Page view(s)

15
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons