Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1304
DC FieldValueLanguage
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2024-06-17T14:29:08Z-
dc.date.available2024-06-17T14:29:08Z-
dc.date.issued2023-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1304-
dc.description.abstractA signed cactus G˙ is a connected signed graph such that every edge belongs to at most one cycle. The rank of G˙ is the rank of its adjacency matrix. In this paper we prove that $$\sum\limits_{ i=1}^n n_i -2k \leq rank(G') \leq \sum\limits_{i=1}^n n_i- 2t+2s$$ where $k$ is the the number of cycles in $G'$, $n_1,n_2, \ldots n_k$ are their lengths, $t$ is number of cycles which rank is their order minus two, and $s$ is the number of edges outside the cycles. Signed cacti attaining the lower bound are determined.en_US
dc.language.isoenen_US
dc.relation.ispartofAmerican Journal of Combinatoricsen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.titleRank of signed cactien_US
dc.typeArticleen_US
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.issn2768-4202en_US
dc.relation.firstpage72en_US
dc.relation.lastpage78en_US
dc.relation.volume2en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Files in This Item:
File Description SizeFormat
V2.05ranksignedcacti.pdf209.06 kBAdobe PDF
View/Open
Show simple item record

Page view(s)

21
checked on Nov 15, 2024

Download(s)

5
checked on Nov 15, 2024

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons