Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1304
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Stanić, Zoran | en_US |
dc.date.accessioned | 2024-06-17T14:29:08Z | - |
dc.date.available | 2024-06-17T14:29:08Z | - |
dc.date.issued | 2023 | - |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1304 | - |
dc.description.abstract | A signed cactus G˙ is a connected signed graph such that every edge belongs to at most one cycle. The rank of G˙ is the rank of its adjacency matrix. In this paper we prove that $$\sum\limits_{ i=1}^n n_i -2k \leq rank(G') \leq \sum\limits_{i=1}^n n_i- 2t+2s$$ where $k$ is the the number of cycles in $G'$, $n_1,n_2, \ldots n_k$ are their lengths, $t$ is number of cycles which rank is their order minus two, and $s$ is the number of edges outside the cycles. Signed cacti attaining the lower bound are determined. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | American Journal of Combinatorics | en_US |
dc.rights | Attribution 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/us/ | * |
dc.title | Rank of signed cacti | en_US |
dc.type | Article | en_US |
dc.contributor.affiliation | Numerical Mathematics and Optimization | en_US |
dc.relation.issn | 2768-4202 | en_US |
dc.relation.firstpage | 72 | en_US |
dc.relation.lastpage | 78 | en_US |
dc.relation.volume | 2 | en_US |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.openairetype | Article | - |
item.grantfulltext | open | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Numerical Mathematics and Optimization | - |
crisitem.author.orcid | 0000-0002-4949-4203 | - |
Appears in Collections: | Research outputs |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
V2.05ranksignedcacti.pdf | 209.06 kB | Adobe PDF | View/Open |
Page view(s)
21
checked on Nov 15, 2024
Download(s)
5
checked on Nov 15, 2024
Google ScholarTM
Check
This item is licensed under a Creative Commons License