Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1303
DC FieldValueLanguage
dc.contributor.authorMelentijević, Petaren_US
dc.date.accessioned2024-06-17T12:14:21Z-
dc.date.available2024-06-17T12:14:21Z-
dc.date.issued2024-04-01-
dc.identifier.issn00255831-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1303-
dc.descriptionThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: <a href="http://dx.doi.org/10.1007/s00208-023-02639-1">http://dx.doi.org/10.1007/s00208-023-02639-1</a>en_US
dc.description.abstractIn this paper we address the problem of finding the best constants in inequalities of the form: (Formula presented.) where P+f and P-f denote analytic and co-analytic projection of a complex-valued function f∈Lp(T), for p≥2 and all s>0, thus proving Hollenbeck–Verbitsky conjecture from (Oper Theory Adva Appl 202:285–295, 2010). We also prove the same inequalities for 1<p≤43 and s≤sec2π2p and confirm that s=sec2π2p is the sharp cutoff for s. The proof uses a method of plurisubharmonic minorants and an approach of proving the appropriate “elementary” inequalities that seems to be new in this topic. We show that this result implies best constants inequalities for the projections on the real-line and half-space multipliers on Rn and an analog for analytic martingales. A remark on an isoperimetric inequality for harmonic functions in the unit disk is also given.en_US
dc.relation.ispartofMathematische Annalenen_US
dc.subjectPrimary 35B30en_US
dc.subjectSecondary 35J05en_US
dc.titleHollenbeck–Verbitsky conjecture on best constant inequalities for analytic and co-analytic projectionsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00208-023-02639-1-
dc.identifier.scopus2-s2.0-85160246333-
dc.identifier.isi000994452600001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85160246333-
dc.relation.issn0025-5831en_US
dc.description.rankM21en_US
dc.relation.firstpage4405en_US
dc.relation.lastpage4448en_US
dc.relation.volume388en_US
dc.relation.issue4en_US
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.grantfulltextembargo_restricted_20250430-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0003-4343-7459-
Appears in Collections:Research outputs
Files in This Item:
File Description SizeFormat Existing users please
Math_Ann.pdf564.95 kBAdobe PDF
    Request a copy
Show simple item record

SCOPUSTM   
Citations

5
checked on Nov 7, 2024

Page view(s)

26
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.