Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1302
DC FieldValueLanguage
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2024-06-12T16:20:09Z-
dc.date.available2024-06-12T16:20:09Z-
dc.date.issued2023-12-15-
dc.identifier.issn0166218X-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1302-
dc.description.abstractThe distance between an eigenvalue λ of a signed graph Ġ and the spectrum of a signed graph Ḣ is defined as min{|λ−μ|:μis an eigenvalue ofḢ}. In this paper, we investigate this distance when Ḣ is a largest induced subgraph of Ġ that does not have λ as an eigenvalue. We estimate the distance in terms of eigenvectors and structural parameters related to vertex degrees. For example, we show that |λ||λ−μ|≤δĠ∖Ḣmax{dḢ(i)dĠ−V(Ḣ)(j):i∈V(Ġ)∖V(Ḣ),j∈V(Ḣ),i∼j}, where δĠ∖Ḣ is the minimum vertex degree in V(Ġ)∖V(Ḣ). If Ḣ is obtained by deleting a single vertex i, this bound reduces to |λ||λ−μ|≤d(i). We also consider the case in which λ is a simple eigenvalue and Ḣ is not necessarily a vertex-deleted subgraph, and the case when λ is the largest eigenvalue of an ordinary (unsigned) graph. Our results for signed graphs apply to ordinary graphs. They can be interesting in the context of eigenvalue distribution, eigenvalue location or spectral distances of (signed) graphs.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofDiscrete Applied Mathematicsen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectAdjacency matrixen_US
dc.subjectEigenspaceen_US
dc.subjectEigenvalueen_US
dc.subjectSigned graphen_US
dc.subjectSpectral distanceen_US
dc.subjectUpper bounden_US
dc.titleEstimating distance between an eigenvalue of a signed graph and the spectrum of an induced subgraphen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.dam.2023.06.039-
dc.identifier.scopus2-s2.0-85165065439-
dc.identifier.isi001044835000001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85165065439-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.issn0166-218Xen_US
dc.description.rankM22en_US
dc.relation.firstpage32en_US
dc.relation.lastpage40en_US
dc.relation.volume340en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.grantfulltextembargo_20251216-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Files in This Item:
File Description SizeFormat Existing users please
EigenvalueDistancesREV.pdf119.12 kBAdobe PDF
Embargoed until December 16, 2025    Request a copy
Show simple item record

Page view(s)

22
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons