Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1301
DC FieldValueLanguage
dc.contributor.authorAnđelić, Milicaen_US
dc.contributor.authorKoledin, Tamaraen_US
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2024-06-12T16:13:09Z-
dc.date.available2024-06-12T16:13:09Z-
dc.date.issued2023-01-01-
dc.identifier.issn03081087-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1301-
dc.descriptionThis is an original manuscript of an article published by Taylor & Francis in Linear and Multilinear Algebra on January 1, 2023, available at: <a href="https://doi.org/10.1080/03081087.2022.2105288">https://doi.org/10.1080/03081087.2022.2105288</a>en_US
dc.description.abstractFor a graph G we consider the problem of the existence of a switching equivalent signed graph with Laplacian eigenvalues that are all main and the problem of determination of all switching equivalent signed graphs with this spectral property. Using a computer search we confirm that apart from  (Formula presented.) every connected graph with at most 7 vertices switches to at least one signed graph with the required property. This fails to hold for exactly 22 connected graphs with 8 vertices. If G is a cograph without repeated eigenvalues, then we give an iterative solution for the latter problem and the complete solution in the particular case when G is a threshold graph. The first problem is resolved positively for a particular class of chain graphs. The obtained results are applicable in control theory for generating controllable signed graphs based on Laplacian dynamics.en_US
dc.language.isoenen_US
dc.publisherTaylor and Francisen_US
dc.relation.ispartofLinear and Multilinear Algebraen_US
dc.rightsAttribution-NonCommercial 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/us/*
dc.subject05C22en_US
dc.subject05C50en_US
dc.subject93B05en_US
dc.subjectchain graphen_US
dc.subjectcographen_US
dc.subjectcontrollabilityen_US
dc.subjectintegral spectrumen_US
dc.subjectMain Laplacian eigenvalueen_US
dc.subjectswitching equivalenceen_US
dc.subjectthreshold graphen_US
dc.titleSigned graphs whose all Laplacian eigenvalues are mainen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/03081087.2022.2105288-
dc.identifier.scopus2-s2.0-85162378162-
dc.identifier.isi000834874800001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85162378162-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.issn0308-1087en_US
dc.description.rankM22en_US
dc.relation.firstpage2409en_US
dc.relation.lastpage2425en_US
dc.relation.volume71en_US
dc.relation.issue15en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.grantfulltextembargo_20241216-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Files in This Item:
File Description SizeFormat Existing users please
AllMainEigREV2.pdf128.64 kBAdobe PDF
Embargoed until December 16, 2024    Request a copy
Show simple item record

SCOPUSTM   
Citations

3
checked on Nov 14, 2024

Page view(s)

19
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons