Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1301
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Anđelić, Milica | en_US |
dc.contributor.author | Koledin, Tamara | en_US |
dc.contributor.author | Stanić, Zoran | en_US |
dc.date.accessioned | 2024-06-12T16:13:09Z | - |
dc.date.available | 2024-06-12T16:13:09Z | - |
dc.date.issued | 2023-01-01 | - |
dc.identifier.issn | 03081087 | - |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1301 | - |
dc.description | This is an original manuscript of an article published by Taylor & Francis in Linear and Multilinear Algebra on January 1, 2023, available at: <a href="https://doi.org/10.1080/03081087.2022.2105288">https://doi.org/10.1080/03081087.2022.2105288</a> | en_US |
dc.description.abstract | For a graph G we consider the problem of the existence of a switching equivalent signed graph with Laplacian eigenvalues that are all main and the problem of determination of all switching equivalent signed graphs with this spectral property. Using a computer search we confirm that apart from (Formula presented.) every connected graph with at most 7 vertices switches to at least one signed graph with the required property. This fails to hold for exactly 22 connected graphs with 8 vertices. If G is a cograph without repeated eigenvalues, then we give an iterative solution for the latter problem and the complete solution in the particular case when G is a threshold graph. The first problem is resolved positively for a particular class of chain graphs. The obtained results are applicable in control theory for generating controllable signed graphs based on Laplacian dynamics. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Taylor and Francis | en_US |
dc.relation.ispartof | Linear and Multilinear Algebra | en_US |
dc.rights | Attribution-NonCommercial 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/3.0/us/ | * |
dc.subject | 05C22 | en_US |
dc.subject | 05C50 | en_US |
dc.subject | 93B05 | en_US |
dc.subject | chain graph | en_US |
dc.subject | cograph | en_US |
dc.subject | controllability | en_US |
dc.subject | integral spectrum | en_US |
dc.subject | Main Laplacian eigenvalue | en_US |
dc.subject | switching equivalence | en_US |
dc.subject | threshold graph | en_US |
dc.title | Signed graphs whose all Laplacian eigenvalues are main | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1080/03081087.2022.2105288 | - |
dc.identifier.scopus | 2-s2.0-85162378162 | - |
dc.identifier.isi | 000834874800001 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85162378162 | - |
dc.contributor.affiliation | Numerical Mathematics and Optimization | en_US |
dc.relation.issn | 0308-1087 | en_US |
dc.description.rank | M22 | en_US |
dc.relation.firstpage | 2409 | en_US |
dc.relation.lastpage | 2425 | en_US |
dc.relation.volume | 71 | en_US |
dc.relation.issue | 15 | en_US |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.openairetype | Article | - |
item.grantfulltext | embargo_20241216 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Numerical Mathematics and Optimization | - |
crisitem.author.orcid | 0000-0002-4949-4203 | - |
Appears in Collections: | Research outputs |
Files in This Item:
File | Description | Size | Format | Existing users please |
---|---|---|---|---|
AllMainEigREV2.pdf | 128.64 kB | Adobe PDF | Request a copy | Embargoed until December 16, 2024
SCOPUSTM
Citations
3
checked on Nov 14, 2024
Page view(s)
19
checked on Nov 15, 2024
Google ScholarTM
Check
Altmetric
Altmetric
This item is licensed under a Creative Commons License