Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1299
DC FieldValueLanguage
dc.contributor.authorKečkić, Dragoljuben_US
dc.contributor.authorStefanović, Srdjanen_US
dc.date.accessioned2024-06-10T13:39:15Z-
dc.date.available2024-06-10T13:39:15Z-
dc.date.issued2023-12-01-
dc.identifier.issn0022247X-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1299-
dc.description.abstractWe give necessary and sufficient condition that an element of an arbitrary C⁎-algebra is an isolated vertex of the orthograph related to the mutual strong Birkhoff-James orthogonality. Also, we prove that for all C⁎-algebras except C,C⊕C and M2(C) all non isolated points make a single connected component of the orthograph which diameter is less than or equal to 4, i.e. any two non isolated points can be connected by a path with at most 4 edges. Some related results are given.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofJournal of Mathematical Analysis and Applicationsen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectBirkhoff-James orthogonalityen_US
dc.subjectC -algebra ⁎en_US
dc.subjectOrthographen_US
dc.titleIsolated vertices and diameter of the BJ-orthograph in C<sup>⁎</sup>-algebrasen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jmaa.2023.127476-
dc.identifier.scopus2-s2.0-85162181430-
dc.identifier.isi001025868000001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85162181430-
dc.relation.issn0022-247Xen_US
dc.description.rankМ21en_US
dc.relation.firstpageArticle no. 127476en_US
dc.relation.volume528en_US
dc.relation.issue1en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.grantfulltextembargo_20251201-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0001-7981-4696-
Appears in Collections:Research outputs
Files in This Item:
File Description SizeFormat Existing users please
yjmaa127476.pdf326.38 kBAdobe PDF
Embargoed until December 1, 2025    Request a copy
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 14, 2024

Page view(s)

28
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons