Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1297
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Đorić, Maša | en_US |
dc.contributor.author | Katić, Jelena | en_US |
dc.contributor.author | Lasković, Bojana | en_US |
dc.date.accessioned | 2024-06-07T13:08:43Z | - |
dc.date.available | 2024-06-07T13:08:43Z | - |
dc.date.issued | 2023-12-01 | - |
dc.identifier.issn | 02365294 | - |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1297 | - |
dc.description.abstract | We give a lower bound for the polynomial entropy of the induced map on an n -fold symmetric product of X , for a homeomorphism f with at least one wandering point, on a compact space X . Also, we compute some polynomial entropies using this result. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Acta Mathematica Hungarica | en_US |
dc.subject | dendrite | en_US |
dc.subject | hyperspace | en_US |
dc.subject | n-fold symmetric product | en_US |
dc.subject | polynomial entropy | en_US |
dc.subject | subshift | en_US |
dc.subject | wandering point | en_US |
dc.title | On Polynomial Entropy Of Induced Maps On Symmetric Products | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s10474-023-01386-8 | - |
dc.identifier.scopus | 2-s2.0-85179304570 | - |
dc.identifier.isi | 001123054000003 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85179304570 | - |
dc.relation.issn | 0236-5294 | en_US |
dc.description.rank | M22 | en_US |
dc.relation.firstpage | 334 | en_US |
dc.relation.lastpage | 347 | en_US |
dc.relation.volume | 171 | en_US |
dc.relation.issue | 2 | en_US |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.orcid | 0000-0001-8927-0506 | - |
Appears in Collections: | Research outputs |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.