Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1287
DC FieldValueLanguage
dc.contributor.authorƉorić, Mašaen_US
dc.contributor.authorKatić, Jelenaen_US
dc.date.accessioned2024-05-30T08:44:52Z-
dc.date.available2024-05-30T08:44:52Z-
dc.date.issued2023-09-01-
dc.identifier.issn15755460-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1287-
dc.descriptionThis version of the article has been accepted for publication, after peer review (when applicable) but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at:<a href="https://dx.doi.org/10.1007/s12346-023-00806-y"> https://dx.doi.org/10.1007/s12346-023-00806-y</a>en_US
dc.description.abstractWe compute the polynomial entropy of the induced maps on hyperspace for a homeomorphism f of an interval or a circle with finitely many non-wandering points. Also, we give a generalization for the case of an interval homeomorphism with an infinite non-wandering set.en_US
dc.publisherSpringeren_US
dc.relation.ispartofQualitative Theory of Dynamical Systemsen_US
dc.subjectCircle homeomorphismsen_US
dc.subjectHyperspacesen_US
dc.subjectInduced mapsen_US
dc.subjectInterval homeomorphismsen_US
dc.subjectPolynomial entropyen_US
dc.titlePolynomial Entropy of Induced Maps of Circle and Interval Homeomorphismsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s12346-023-00806-y-
dc.identifier.scopus2-s2.0-85159685504-
dc.identifier.isi000991960600003-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85159685504-
dc.relation.issn1575-5460en_US
dc.description.rankM21en_US
dc.relation.firstpageArticle no 103en_US
dc.relation.volume22en_US
dc.relation.issue3en_US
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0001-8927-0506-
Appears in Collections:Research outputs
Files in This Item:
File Description SizeFormat Existing users please
Katic2023-01.pdf428.25 kBAdobe PDF
    Request a copy
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 8, 2024

Page view(s)

23
checked on Nov 14, 2024

Download(s)

2
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.