Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1280
DC FieldValueLanguage
dc.contributor.authorLi, Shuen_US
dc.contributor.authorStanić, Zoranen_US
dc.contributor.authorWang, Jianfengen_US
dc.date.accessioned2024-05-24T13:44:03Z-
dc.date.available2024-05-24T13:44:03Z-
dc.date.issued2023-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1280-
dc.description.abstractThe M-rank of a graph G is the rank of the associated matrix M(G). In this paper, we summarize the results about the graphs with a comparatively small M-rank, and propose some problems for further study. In addition, for a real number α ∈ [0, 1], we determine all graphs with Aα-rank 2, where Aα(G) = αD(G) + (1 − α)A(G) and A(G) and D(G) are respectively the adjacency matrix and the diagonal matrix of vertex degrees of G.en_US
dc.language.isoenen_US
dc.publisherChinese Mathematical Societyen_US
dc.relation.ispartofAdvances in Mathematics (China)en_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subjectadjacency matrixen_US
dc.subjectdegree matrixen_US
dc.subjectconvex linear combination of matricesen_US
dc.subjectmatrix ranken_US
dc.titleOn graphs with small ranks: Old and new resultsen_US
dc.typeArticleen_US
dc.identifier.doi10.11845/sxjz.2022006a-
dc.relation.issn1000-0917en_US
dc.relation.firstpage385en_US
dc.relation.lastpage405en_US
dc.relation.volume52en_US
dc.relation.issue3en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Files in This Item:
File Description SizeFormat
am(c)1.pdf873.54 kBAdobe PDF
View/Open
Show simple item record

Page view(s)

17
checked on Nov 15, 2024

Download(s)

3
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons