Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1273
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jocić, Danko | en_US |
dc.date.accessioned | 2024-04-02T17:39:42Z | - |
dc.date.available | 2024-04-02T17:39:42Z | - |
dc.date.issued | 2022-11-01 | - |
dc.identifier.issn | 16618254 | - |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1273 | - |
dc.description | This version of the article has been accepted for publication, after peer review (when applicable) but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: <a href="https://dx.doi.org/10.1007/s11785-022-01287-8">https://dx.doi.org/10.1007/s11785-022-01287-8</a> | en_US |
dc.description.abstract | If A and B are strict contractions on a Hilbert space H and the derivation AX- XB is a trace class ([InlineEquation not available: see fulltext.]) operator for some bounded operator [InlineEquation not available: see fulltext.] acting on a Hilbert space H, then for all holomorphic function f, which maps the open unit disc D⊂ C into itself, we have shown by (3.13) in Theorem 3.5 that [InlineEquation not available: see fulltext.] and ||I-A∗A(f(A)X-Xf(B))I-BB∗||1⩽||I-f(A)∗f(A)(AX-XB)I-f(B)f(B)∗||1.If AX- XB is in a Hilbert-Schmidt class [InlineEquation not available: see fulltext.] then [InlineEquation not available: see fulltext.] as well, and it satisfies ||f(A)X-Xf(B)-A(f(A)X-Xf(B))B∗||2⩽||AX-XB-f(A)(AX-XB)f(B)∗||2. | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Complex Analysis and Operator Theory | en_US |
dc.subject | Norm inequalities | en_US |
dc.subject | Q and Q norms ∗ | en_US |
dc.subject | Schatten von Neuman ibeals | en_US |
dc.title | Noncommutative Schwarz lemma and Pick–Julia Theorems for Generalized Derivations in Norm Ideals of Compact Operators | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s11785-022-01287-8 | - |
dc.identifier.scopus | 2-s2.0-85140746353 | - |
dc.identifier.isi | 000876595000003 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85140746353 | - |
dc.relation.issn | 1661-8254 | en_US |
dc.relation.firstpage | Article no. 111 | en_US |
dc.relation.volume | 16 | en_US |
dc.relation.issue | 8 | en_US |
item.fulltext | With Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | restricted | - |
item.openairetype | Article | - |
crisitem.author.dept | Real and Functional Analysis | - |
crisitem.author.orcid | 0000-0003-2084-7180 | - |
Appears in Collections: | Research outputs |
Files in This Item:
File | Size | Format | Existing users please |
---|---|---|---|
Jocic CAOT 16 111 (2022).pdf | 503.98 kB | Adobe PDF | Request a copy |
SCOPUSTM
Citations
3
checked on Dec 21, 2024
Page view(s)
64
checked on Dec 25, 2024
Download(s)
2
checked on Dec 25, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.