Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1273
DC FieldValueLanguage
dc.contributor.authorJocić, Dankoen_US
dc.date.accessioned2024-04-02T17:39:42Z-
dc.date.available2024-04-02T17:39:42Z-
dc.date.issued2022-11-01-
dc.identifier.issn16618254-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1273-
dc.descriptionThis version of the article has been accepted for publication, after peer review (when applicable) but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: <a href="https://dx.doi.org/10.1007/s11785-022-01287-8">https://dx.doi.org/10.1007/s11785-022-01287-8</a>en_US
dc.description.abstractIf A and B are strict contractions on a Hilbert space H and the derivation AX- XB is a trace class ([InlineEquation not available: see fulltext.]) operator for some bounded operator [InlineEquation not available: see fulltext.] acting on a Hilbert space H, then for all holomorphic function f, which maps the open unit disc D⊂ C into itself, we have shown by (3.13) in Theorem 3.5 that [InlineEquation not available: see fulltext.] and ||I-A∗A(f(A)X-Xf(B))I-BB∗||1⩽||I-f(A)∗f(A)(AX-XB)I-f(B)f(B)∗||1.If AX- XB is in a Hilbert-Schmidt class [InlineEquation not available: see fulltext.] then [InlineEquation not available: see fulltext.] as well, and it satisfies ||f(A)X-Xf(B)-A(f(A)X-Xf(B))B∗||2⩽||AX-XB-f(A)(AX-XB)f(B)∗||2.en_US
dc.publisherSpringeren_US
dc.relation.ispartofComplex Analysis and Operator Theoryen_US
dc.subjectNorm inequalitiesen_US
dc.subjectQ and Q norms ∗en_US
dc.subjectSchatten von Neuman ibealsen_US
dc.titleNoncommutative Schwarz lemma and Pick–Julia Theorems for Generalized Derivations in Norm Ideals of Compact Operatorsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11785-022-01287-8-
dc.identifier.scopus2-s2.0-85140746353-
dc.identifier.isi000876595000003-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85140746353-
dc.relation.issn1661-8254en_US
dc.relation.firstpageArticle no. 111en_US
dc.relation.volume16en_US
dc.relation.issue8en_US
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextrestricted-
item.openairetypeArticle-
crisitem.author.deptReal and Functional Analysis-
crisitem.author.orcid0000-0003-2084-7180-
Appears in Collections:Research outputs
Files in This Item:
File SizeFormat Existing users please
Jocic CAOT 16 111 (2022).pdf503.98 kBAdobe PDF
    Request a copy
Show simple item record

SCOPUSTM   
Citations

3
checked on Dec 21, 2024

Page view(s)

64
checked on Dec 25, 2024

Download(s)

2
checked on Dec 25, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.