Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1272
DC FieldValueLanguage
dc.contributor.authorMandal, Santanuen_US
dc.contributor.authorMehatari, Ranjiten_US
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2024-03-20T13:50:43Z-
dc.date.available2024-03-20T13:50:43Z-
dc.date.issued2024-01-01-
dc.identifier.issn00195588-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1272-
dc.descriptionThis version of the article has been accepted for publication, after peer review (when applicable) but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: <a href="https://dx.doi.org/10.1007/s13226-024-00572-w"> https://dx.doi.org/10.1007/s13226-024-00572-w</a>en_US
dc.description.abstractIn this paper we consider particular graphs defined by (Formula Presented.), where k is even, Kα is a complete graph on α vertices, ∪ stands for the disjoint union and an overline denotes the complementary graph. These graphs do not contain the 4-vertex path as an induced subgraph, i.e., they belong to the class of cographs. In addition, they are iteratively constructed from the generating sequence (α1,α2,…,αk). Our primary question is which invariants or graph properties can be deduced from a given sequence. In this context, we compute the Lapacian eigenvalues and the corresponding eigenspaces, and derive a lower and an upper bound for the number of distinct Laplacian eigenvalues. We also determine the graphs under consideration with a fixed number of vertices that either minimize or maximize the algebraic connectivity (that is the second smallest Laplacian eigenvalue). The clique number is computed in terms of a generating sequence and a relationship between it and the algebraic connectivity is established.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofIndian Journal of Pure and Applied Mathematicsen_US
dc.subjectalgebraic connectivityen_US
dc.subjectclique numberen_US
dc.subjectCographen_US
dc.subjectLaplacian spectrumen_US
dc.titleLaplacian eigenvalues and eigenspaces of cographs generated by finite sequenceen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s13226-024-00572-w-
dc.identifier.scopus2-s2.0-85187416022-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85187416022-
dc.identifier.urlhttps://link.springer.com/article/10.1007/s13226-024-00572-w-
dc.relation.issn0019-5588en_US
dc.description.rankM23en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextrestricted-
item.openairetypeArticle-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Files in This Item:
File Description SizeFormat Existing users please
ijpam1.pdf392.33 kBAdobe PDF
    Request a copy
Show simple item record

SCOPUSTM   
Citations

2
checked on Dec 18, 2024

Page view(s)

125
checked on Dec 24, 2024

Download(s)

3
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.