Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1261
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jocić, Danko | en_US |
dc.contributor.author | Lazarević, Milan | en_US |
dc.date.accessioned | 2023-12-19T11:15:09Z | - |
dc.date.available | 2023-12-19T11:15:09Z | - |
dc.date.issued | 2022-01-01 | - |
dc.identifier.issn | 22970215 | - |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1261 | - |
dc.description.abstract | In this survey paper we present operator and norm inequalities of Cauchy–Schwarz type: (formula presented) and symmetrically norming functions Ψ, such that the associated unitarily invariant norm is nuclear, Q∗ or arbitrary, under some additional commutativity conditions. The applications of this and complementary inequalities for Q and Schatten–von Neumann norms to Aczél–Bellman, Grüss–Landau, arithmetic–geometric, Young, Minkowski, Heinz, Zhan, Heron, and generalized derivation norm inequalities are also presented. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Birkhäuser | en_US |
dc.relation.ispartof | Trends in Mathematics | en_US |
dc.subject | Elementary operators | en_US |
dc.subject | Generalized derivations | en_US |
dc.subject | i.p.t. transformers | en_US |
dc.subject | N-hyper-accretive and N-hyper-contractive operators | en_US |
dc.subject | Norm inequalities | en_US |
dc.subject | Operator monotone functions | en_US |
dc.subject | Q and Q -norms ∗ | en_US |
dc.subject | Subnormal | en_US |
dc.title | Cauchy–Schwarz Operator and Norm Inequalities for Inner Product Type Transformers in Norm Ideals of Compact Operators, with Applications | en_US |
dc.type | Book Part | en_US |
dc.relation.publication | Operator and Norm Inequalities and Related Topics | en_US |
dc.identifier.doi | 10.1007/978-3-031-02104-6_6 | - |
dc.identifier.scopus | 2-s2.0-85136206548 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85136206548 | - |
dc.contributor.affiliation | Real and Functional Analysis | en_US |
dc.contributor.affiliation | Mathematical Analysis | en_US |
dc.relation.isbn | 978-3-031-02103-9 | en_US |
dc.relation.firstpage | 179 | en_US |
dc.relation.lastpage | 219 | en_US |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
item.openairetype | Book Part | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Real and Functional Analysis | - |
crisitem.author.dept | Mathematical Analysis | - |
crisitem.author.orcid | 0000-0003-2084-7180 | - |
crisitem.author.orcid | 0000-0003-1408-5626 | - |
Appears in Collections: | Research outputs |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.