Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1259
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jocić, Danko | en_US |
dc.date.accessioned | 2023-12-18T12:09:05Z | - |
dc.date.available | 2023-12-18T12:09:05Z | - |
dc.date.issued | 2023-10-01 | - |
dc.identifier.issn | 20088752 | - |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1259 | - |
dc.description | This version of the article has been accepted for publication, after peer review (when applicable) but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: <a href="https://dx.doi.org/10.1007/s43034-023-00291-z"> https://dx.doi.org/10.1007/s43034-023-00291-z</a> | en_US |
dc.description.abstract | If C and D are strictly accretive operators on H and at least one of them is normal, such that CX-XD∈CΨ(H) for some X∈ B(H) and Q∗ symmetrically norming function Ψ , then for all holomorphic functions h, mapping the open right half (complex) plane into itself, we have h(C)X-Xh(D)∈CΨ(H), satisfying ||(C∗+C)1/2(h(C)X-Xh(D))(D+D∗)1/2||Ψ⩽||(h(C)∗+h(C))1/2(CX-XD)(h(D)+h(D)∗)1/2||Ψ. If 1 ⩽ q, r, s⩽ + ∞ and p⩾ 2 , A, B, X∈ B(H) and A, B are strict contractions satisfying the condition AX-XB∈Cs(H), then for all holomorphic functions g, mapping the open unit disc into the open right half (complex) plane, g(A)X-Xg(B)∈Cs(H), satisfying Schatten–von Neumann s-norms (||·||s) inequality |||(g(A)∗+g(A))12(I-A∗A)12|1q-1(I-A∗A)12(g(A)X-Xg(B))×(I-BB∗)12|(g(B)+g(B)∗)12(I-BB∗)12|1r-1||s⩽|||(g(A)∗+g(A))12(I-AA∗)12|1q(I-AA∗)-12(AX-XB)×(I-B∗B)-12|(g(B)+g(B)∗)12(I-B∗B)12|1r||s. Other variants of some new Pick–Julia-type norm and operator inequalities are also obtained, they both complement the well-known Pick–Julia theorems for operators, obtained by Ky Fan, Ando, and Author, and they also extend these theorems to the field of norm ideals of compact operators, including Schatten–von Neumann ideals. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Annals of Functional Analysis | en_US |
dc.subject | Norm inequalities | en_US |
dc.subject | Q and Q norms ∗ | en_US |
dc.subject | Schatten–von Neumann ideals | en_US |
dc.title | Noncommutative Pick–Julia theorems for generalized derivations in Q, Q <sup>∗</sup> and Schatten–von Neumann ideals of compact operators | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s43034-023-00291-z | - |
dc.identifier.scopus | 2-s2.0-85168436656 | - |
dc.identifier.isi | 001054178500001 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85168436656 | - |
dc.identifier.url | https://link.springer.com/article/10.1007/s43034-023-00291-z | - |
dc.contributor.affiliation | Real and Functional Analysis | en_US |
dc.relation.issn | 2008-8752 | en_US |
dc.description.rank | M22 | en_US |
dc.relation.firstpage | Article no. 72 | en_US |
dc.relation.volume | 14 | en_US |
dc.relation.issue | 4 | en_US |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.openairetype | Article | - |
item.grantfulltext | restricted | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Real and Functional Analysis | - |
crisitem.author.orcid | 0000-0003-2084-7180 | - |
Appears in Collections: | Research outputs |
Files in This Item:
File | Description | Size | Format | Existing users please |
---|---|---|---|---|
Jocic AoFA 2023.pdf | 2.27 MB | Adobe PDF | Request a copy |
SCOPUSTM
Citations
2
checked on Nov 9, 2024
Page view(s)
51
checked on Nov 14, 2024
Download(s)
2
checked on Nov 14, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.