Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1259
DC FieldValueLanguage
dc.contributor.authorJocić, Dankoen_US
dc.date.accessioned2023-12-18T12:09:05Z-
dc.date.available2023-12-18T12:09:05Z-
dc.date.issued2023-10-01-
dc.identifier.issn20088752-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1259-
dc.descriptionThis version of the article has been accepted for publication, after peer review (when applicable) but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: <a href="https://dx.doi.org/10.1007/s43034-023-00291-z"> https://dx.doi.org/10.1007/s43034-023-00291-z</a>en_US
dc.description.abstractIf C and D are strictly accretive operators on H and at least one of them is normal, such that CX-XD∈CΨ(H) for some X∈ B(H) and Q∗ symmetrically norming function Ψ , then for all holomorphic functions h, mapping the open right half (complex) plane into itself, we have h(C)X-Xh(D)∈CΨ(H), satisfying ||(C∗+C)1/2(h(C)X-Xh(D))(D+D∗)1/2||Ψ⩽||(h(C)∗+h(C))1/2(CX-XD)(h(D)+h(D)∗)1/2||Ψ. If 1 ⩽ q, r, s⩽ + ∞ and p⩾ 2 , A, B, X∈ B(H) and A, B are strict contractions satisfying the condition AX-XB∈Cs(H), then for all holomorphic functions g, mapping the open unit disc into the open right half (complex) plane, g(A)X-Xg(B)∈Cs(H), satisfying Schatten–von Neumann s-norms (||·||s) inequality |||(g(A)∗+g(A))12(I-A∗A)12|1q-1(I-A∗A)12(g(A)X-Xg(B))×(I-BB∗)12|(g(B)+g(B)∗)12(I-BB∗)12|1r-1||s⩽|||(g(A)∗+g(A))12(I-AA∗)12|1q(I-AA∗)-12(AX-XB)×(I-B∗B)-12|(g(B)+g(B)∗)12(I-B∗B)12|1r||s. Other variants of some new Pick–Julia-type norm and operator inequalities are also obtained, they both complement the well-known Pick–Julia theorems for operators, obtained by Ky Fan, Ando, and Author, and they also extend these theorems to the field of norm ideals of compact operators, including Schatten–von Neumann ideals.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofAnnals of Functional Analysisen_US
dc.subjectNorm inequalitiesen_US
dc.subjectQ and Q norms ∗en_US
dc.subjectSchatten–von Neumann idealsen_US
dc.titleNoncommutative Pick–Julia theorems for generalized derivations in Q, Q <sup>∗</sup> and Schatten–von Neumann ideals of compact operatorsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s43034-023-00291-z-
dc.identifier.scopus2-s2.0-85168436656-
dc.identifier.isi001054178500001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85168436656-
dc.identifier.urlhttps://link.springer.com/article/10.1007/s43034-023-00291-z-
dc.contributor.affiliationReal and Functional Analysisen_US
dc.relation.issn2008-8752en_US
dc.description.rankM22en_US
dc.relation.firstpageArticle no. 72en_US
dc.relation.volume14en_US
dc.relation.issue4en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptReal and Functional Analysis-
crisitem.author.orcid0000-0003-2084-7180-
Appears in Collections:Research outputs
Files in This Item:
File Description SizeFormat Existing users please
Jocic AoFA 2023.pdf2.27 MBAdobe PDF
    Request a copy
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 9, 2024

Page view(s)

51
checked on Nov 14, 2024

Download(s)

2
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.