Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1243
DC FieldValueLanguage
dc.contributor.authorValjarević, Draganaen_US
dc.contributor.authorMerkle, Anaen_US
dc.date.accessioned2022-09-29T16:48:13Z-
dc.date.available2022-09-29T16:48:13Z-
dc.date.issued2021-
dc.identifier.issn01677152-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1243-
dc.description.abstractIn this paper we consider a concept of statistical causality, based on Granger's definition of causality and analyze the relationships between given causality and the concept of measurable separability of σ-algebras. The measurable separability of σ-algebras is defined in Florens et al. (1990). We give a generalization of that definition for flows of information represented by filtrations and consider some properties of measurable separability that are directly connected to the concept of statistical causality. Also, we apply some of these results on Bayesian experiment.en_US
dc.relation.ispartofStatistics and Probability Lettersen_US
dc.subjectBayesian experimenten_US
dc.subjectCausalityen_US
dc.subjectFiltrationen_US
dc.subjectMeasurable separabilityen_US
dc.titleStatistical causality and measurable separability of σ-algebrasen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.spl.2021.109166-
dc.identifier.scopus2-s2.0-85107681743-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85107681743-
dc.contributor.affiliationProbability and Mathematical Statisticsen_US
dc.description.rankM23en_US
dc.relation.volume177en_US
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptProbability and Mathematical Statistics-
crisitem.author.orcid0000-0002-0006-0383-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 14, 2024

Page view(s)

42
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.