Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1239
DC FieldValueLanguage
dc.contributor.authorRadojičić, Draganaen_US
dc.contributor.authorRadojičić Matić, Ninaen_US
dc.contributor.authorKredatus, Simeonen_US
dc.date.accessioned2022-09-29T16:37:29Z-
dc.date.available2022-09-29T16:37:29Z-
dc.date.issued2021-
dc.identifier.issn18200214en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1239-
dc.description.abstractThis paper studies the informativeness of features extracted from a limit order book data, to classify market data vector into the label (buy/idle) by using the Long short-term memory (LSTM) network. New technical indicators based on the support/resistance zones are introduced to enrich the set of features. We evaluate whether the performance of the LSTM network model is improved when we select features with respect to the newly proposed methods. Moreover, we employ mul-ticriteria optimization to perform adequate feature selection among the proposed approaches, with respect to precision, recall, and Fβ score. Seven variations of approaches to select features are proposed and the best is selected by incorporation of multicriteria optimization.en
dc.relation.ispartofComputer Science and Information Systemsen
dc.subjectFeature selec-tionen
dc.subjectLimit order booken
dc.subjectMachine learningen
dc.subjectMulticriteria optimizationen
dc.subjectTime-seriesen
dc.titleA multicriteria optimization approach for the stock market feature selectionen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/CSIS200326044R-
dc.identifier.scopus2-s2.0-85111010812-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85111010812-
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.description.rankM23en_US
dc.relation.firstpage749en
dc.relation.lastpage769en
dc.relation.volume18en
dc.relation.issue3en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.orcid0000-0002-9968-948X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 15, 2024

Page view(s)

13
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.