Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1238
DC FieldValueLanguage
dc.contributor.authorVujošević, Biljanaen_US
dc.date.accessioned2022-09-29T16:29:18Z-
dc.date.available2022-09-29T16:29:18Z-
dc.date.issued2016-09-01-
dc.identifier.issn18463886en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1238-
dc.description.abstractIn this note we observe inclusion systems of Hilbert modules over the C∗-algebra of all compact operators acting on a Hilbert space. We prove that if each Hilbert C∗-module in the generated product system is strictly complete, then it is possible to construct a bijection between the set of all units of an inclusion system and a quotient (by a suitable equivalence relation) of a certain set of units in the generated product system. Thereby we obtain a generalization of the result that provides the existence of a bijection between the set of all units in an inclusion system of Hilbert spaces and the set of all units in the generated product system (B. V. R. Bhat and M. Mukherjee [Inclusion systems and amalgamated products of product systems, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 13 (2010), no. 1, 1-26]).en_US
dc.language.isoenen_US
dc.publisherZagreb : Element d.o.o.en_US
dc.relation.ispartofOperators and Matricesen_US
dc.subject(two-sided) Hilbert C -modules ∗en_US
dc.subjectInclusion systemsen_US
dc.subjectProduct systemsen_US
dc.subjectUnits of inclusion systemsen_US
dc.subjectUnits of product systemsen_US
dc.titleInclusion systems of Hilbert modules over the C<sup>∗</sup>-Algebra of compact operatorsen_US
dc.typeArticleen_US
dc.identifier.doi10.7153/oam-10-43-
dc.identifier.scopus2-s2.0-84993144558-
dc.identifier.isi000386370100015-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84993144558-
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.issn1846-3886en_US
dc.description.rankM22en_US
dc.relation.firstpage701en_US
dc.relation.lastpage711en_US
dc.relation.volume10en_US
dc.relation.issue3en_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.deptMathematical Analysis-
crisitem.author.orcid0000-0002-6910-6810-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Dec 10, 2025

Page view(s)

10
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.