Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1238
DC FieldValueLanguage
dc.contributor.authorVujošević, Biljanaen_US
dc.date.accessioned2022-09-29T16:29:18Z-
dc.date.available2022-09-29T16:29:18Z-
dc.date.issued2016-09-01-
dc.identifier.issn18463886en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1238-
dc.description.abstractIn this note we observe inclusion systems of Hilbert modules over the C∗-algebra of all compact operators acting on a Hilbert space. We prove that if each Hilbert C∗-module in the generated product system is strictly complete, then it is possible to construct a bijection between the set of all units of an inclusion system and a quotient (by a suitable equivalence relation) of a certain set of units in the generated product system. Thereby we obtain a generalization of the result that provides the existence of a bijection between the set of all units in an inclusion system of Hilbert spaces and the set of all units in the generated product system (B. V. R. Bhat and M. Mukherjee [Inclusion systems and amalgamated products of product systems, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 13 (2010), no. 1, 1-26]).en
dc.relation.ispartofOperators and Matricesen
dc.subject(two-sided) Hilbert C -modules ∗en
dc.subjectInclusion systemsen
dc.subjectProduct systemsen
dc.subjectUnits of inclusion systemsen
dc.subjectUnits of product systemsen
dc.titleInclusion systems of Hilbert modules over the C<sup>∗</sup>-Algebra of compact operatorsen_US
dc.typeArticleen_US
dc.identifier.doi10.7153/oam-10-43-
dc.identifier.scopus2-s2.0-84993144558-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84993144558-
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.firstpage701en
dc.relation.lastpage711en
dc.relation.volume10en
dc.relation.issue3en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptMathematical Analysis-
crisitem.author.orcid0000-0002-6910-6810-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 7, 2024

Page view(s)

9
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.