Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1237
DC FieldValueLanguage
dc.contributor.authorVujošević, Biljanaen_US
dc.date.accessioned2022-09-29T16:29:18Z-
dc.date.available2022-09-29T16:29:18Z-
dc.date.issued2020-10-01-
dc.identifier.issn10186301en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1237-
dc.description.abstractWe introduce the notion of additive units (addits) of a pointed inclusion system of Hilbert modules over the C∗-algebra of all compact operators acting on a Hilbert space G. By a pointed inclusion system, we mean an inclusion system with a fixed normalised reference unit. We prove that if G is a Hilbert space of finite dimension, then there is a bijection between the set of addits of a pointed inclusion system and the set of addits of the generated product system. We also consider addits of spatial product systems of Hilbert modules and, as an example, we find all continuous addits in the product system from Barreto et al. (J Funct Anal 212:121–181, 2004, Example 4.2.4).en
dc.relation.ispartofBulletin of the Iranian Mathematical Societyen_US
dc.subject(Additive) units of inclusionen
dc.subject(Additive) units of producten
dc.subject(Two-sided) Hilbert C -modules ∗en
dc.subjectInclusion systemsen
dc.subjectProduct systemsen
dc.titleAdditive Units of Inclusion Systems of Hilbert Modules over the C<sup>∗</sup> -Algebra of Compact Operatorsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s41980-019-00325-0-
dc.identifier.scopus2-s2.0-85077155564-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85077155564-
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.firstpage1267en_US
dc.relation.lastpage1282en_US
dc.relation.volume46en_US
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptMathematical Analysis-
crisitem.author.orcid0000-0002-6910-6810-
Appears in Collections:Research outputs
Show simple item record

Page view(s)

17
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.