Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1236
DC FieldValueLanguage
dc.contributor.authorVujošević, Biljanaen_US
dc.date.accessioned2022-09-29T16:29:18Z-
dc.date.available2022-09-29T16:29:18Z-
dc.date.issued2015-01-01-
dc.identifier.issn03501302en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1236-
dc.description.abstractWe prove that a conditionally completely positive definite kernel, as the generator of completely positive definite (CPD) semigroup associated with a continuous set of units for a product system over a C*-algebra B, allows a construction of a Hilbert B -B module. That construction is used to define the index of the initial product system. It is proved that such definition is equivalent to the one previously given by Kečkić and Vujošević [On the index of product systems of Hilbert modules, Filomat, to appear, ArXiv:1111.1935v1 [math.OA] 8 Nov 2011]. Also, it is pointed out that the new definition of the index corresponds to the one given earlier by Arveson (in the case B = C).en_US
dc.language.isoenen_US
dc.publisherBeograd : Matematički institut SANUen_US
dc.relation.ispartofPublications de l'Institut Mathematiqueen_US
dc.subjectHilbert moduleen_US
dc.subjectIndexen_US
dc.subjectProduct systemen_US
dc.titleThe index of product systems of Hilbert modules: Two equivalent definitionsen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/PIM141114001V-
dc.identifier.scopus2-s2.0-84929914991-
dc.identifier.isi000213186600006-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84929914991-
dc.identifier.urlhttps://doiserbia.nb.rs/ft.aspx?id=0350-13021511049V-
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.issn0350-1302en_US
dc.description.rankM23en_US
dc.relation.firstpage49en_US
dc.relation.lastpage56en_US
dc.relation.volume97en_US
dc.relation.issue111en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.openairetypeArticle-
crisitem.author.deptMathematical Analysis-
crisitem.author.orcid0000-0002-6910-6810-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

2
checked on Oct 6, 2025

Page view(s)

10
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.