Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1236
DC FieldValueLanguage
dc.contributor.authorVujošević, Biljanaen_US
dc.date.accessioned2022-09-29T16:29:18Z-
dc.date.available2022-09-29T16:29:18Z-
dc.date.issued2015-01-01-
dc.identifier.issn03501302en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1236-
dc.description.abstractWe prove that a conditionally completely positive definite kernel, as the generator of completely positive definite (CPD) semigroup associated with a continuous set of units for a product system over a C*-algebra B, allows a construction of a Hilbert B -B module. That construction is used to define the index of the initial product system. It is proved that such definition is equivalent to the one previously given by Kečkić and Vujošević [On the index of product systems of Hilbert modules, Filomat, to appear, ArXiv:1111.1935v1 [math.OA] 8 Nov 2011]. Also, it is pointed out that the new definition of the index corresponds to the one given earlier by Arveson (in the case B = C).en
dc.relation.ispartofPublications de l'Institut Mathematiqueen
dc.subjectHilbert moduleen
dc.subjectIndexen
dc.subjectProduct systemen
dc.titleThe index of product systems of hilbert modules: Two equivalent definitionsen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/PIM141114001V-
dc.identifier.scopus2-s2.0-84929914991-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84929914991-
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.firstpage49en
dc.relation.lastpage56en
dc.relation.volume97en
dc.relation.issue111en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptMathematical Analysis-
crisitem.author.orcid0000-0002-6910-6810-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 8, 2024

Page view(s)

8
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.