Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1236
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Vujošević, Biljana | en_US |
dc.date.accessioned | 2022-09-29T16:29:18Z | - |
dc.date.available | 2022-09-29T16:29:18Z | - |
dc.date.issued | 2015-01-01 | - |
dc.identifier.issn | 03501302 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1236 | - |
dc.description.abstract | We prove that a conditionally completely positive definite kernel, as the generator of completely positive definite (CPD) semigroup associated with a continuous set of units for a product system over a C*-algebra B, allows a construction of a Hilbert B -B module. That construction is used to define the index of the initial product system. It is proved that such definition is equivalent to the one previously given by Kečkić and Vujošević [On the index of product systems of Hilbert modules, Filomat, to appear, ArXiv:1111.1935v1 [math.OA] 8 Nov 2011]. Also, it is pointed out that the new definition of the index corresponds to the one given earlier by Arveson (in the case B = C). | en |
dc.relation.ispartof | Publications de l'Institut Mathematique | en |
dc.subject | Hilbert module | en |
dc.subject | Index | en |
dc.subject | Product system | en |
dc.title | The index of product systems of hilbert modules: Two equivalent definitions | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.2298/PIM141114001V | - |
dc.identifier.scopus | 2-s2.0-84929914991 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84929914991 | - |
dc.contributor.affiliation | Mathematical Analysis | en_US |
dc.relation.firstpage | 49 | en |
dc.relation.lastpage | 56 | en |
dc.relation.volume | 97 | en |
dc.relation.issue | 111 | en |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.fulltext | No Fulltext | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Mathematical Analysis | - |
crisitem.author.orcid | 0000-0002-6910-6810 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
2
checked on Mar 30, 2025
Page view(s)
10
checked on Jan 19, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.