Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1236
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Vujošević, Biljana | en_US |
dc.date.accessioned | 2022-09-29T16:29:18Z | - |
dc.date.available | 2022-09-29T16:29:18Z | - |
dc.date.issued | 2015-01-01 | - |
dc.identifier.issn | 03501302 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1236 | - |
dc.description.abstract | We prove that a conditionally completely positive definite kernel, as the generator of completely positive definite (CPD) semigroup associated with a continuous set of units for a product system over a C*-algebra B, allows a construction of a Hilbert B -B module. That construction is used to define the index of the initial product system. It is proved that such definition is equivalent to the one previously given by Kečkić and Vujošević [On the index of product systems of Hilbert modules, Filomat, to appear, ArXiv:1111.1935v1 [math.OA] 8 Nov 2011]. Also, it is pointed out that the new definition of the index corresponds to the one given earlier by Arveson (in the case B = C). | en |
dc.relation.ispartof | Publications de l'Institut Mathematique | en |
dc.subject | Hilbert module | en |
dc.subject | Index | en |
dc.subject | Product system | en |
dc.title | The index of product systems of hilbert modules: Two equivalent definitions | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.2298/PIM141114001V | - |
dc.identifier.scopus | 2-s2.0-84929914991 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84929914991 | - |
dc.contributor.affiliation | Mathematical Analysis | en_US |
dc.relation.firstpage | 49 | en |
dc.relation.lastpage | 56 | en |
dc.relation.volume | 97 | en |
dc.relation.issue | 111 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Mathematical Analysis | - |
crisitem.author.orcid | 0000-0002-6910-6810 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
2
checked on Nov 8, 2024
Page view(s)
8
checked on Nov 14, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.