Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1235
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Vujošević, Biljana | en_US |
dc.date.accessioned | 2022-09-29T16:29:17Z | - |
dc.date.available | 2022-09-29T16:29:17Z | - |
dc.date.issued | 2022 | - |
dc.identifier.issn | 02534142 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1235 | - |
dc.description.abstract | In this paper, motivated by Bhat et al. (Trans. Amer. Math. Soc.370 (2018) 2605–2637), we determine all continuous roots of the vacuum unit in the time ordered product system IΓ⊗(F), where F is a two-sided Hilbert module over the C∗-algebra B of all bounded operators acting on a Hilbert space of finite dimension. Afterwards, we prove that the index of that product system and the Hilbert B- B module of all continuous roots of the vacuum unit are isomorphic as Hilbert two-sided modules. | en |
dc.relation.ispartof | Proceedings of the Indian Academy of Sciences: Mathematical Sciences | en_US |
dc.subject | additive units of product systems | en |
dc.subject | Hilbert C -modules ∗ | en |
dc.subject | index | en |
dc.subject | Product systems | en |
dc.subject | time ordered product systems | en |
dc.title | On the index and roots of time ordered product systems | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s12044-021-00647-2 | - |
dc.identifier.scopus | 2-s2.0-85120748712 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85120748712 | - |
dc.contributor.affiliation | Mathematical Analysis | en_US |
dc.description.rank | M23 | en_US |
dc.relation.volume | 132 | en_US |
dc.relation.issue | 1 | en_US |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Mathematical Analysis | - |
crisitem.author.orcid | 0000-0002-6910-6810 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
1
checked on Nov 8, 2024
Page view(s)
17
checked on Nov 14, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.