Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1234
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Roslavcev, Maja | en_US |
dc.date.accessioned | 2022-09-29T16:20:46Z | - |
dc.date.available | 2022-09-29T16:20:46Z | - |
dc.date.issued | 2021-01-01 | - |
dc.identifier.issn | 00255165 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1234 | - |
dc.description.abstract | Let V be a valuation ring such that dim(V ) = 0 and the annihilator of each element in V is finitely generated. In this paper it is proved that if I is a finitely generated ideal in the polynomial ring V [X], then there is a Gröbner basis for I. Also, an example of a zero-dimensional non-Noetherian valuation ring RM is presented, together with an example of finding a Gröbner basis for a certain ideal in a polynomial ring RM [X]. | en_US |
dc.relation.ispartof | Matematicki Vesnik | en_US |
dc.subject | Gröbner basis | en_US |
dc.subject | Valuation ring | en_US |
dc.subject | Zero-dimensional ring | en_US |
dc.title | Gröbner bases for ideals in univariate polynomial rings over valuation rings | en_US |
dc.type | Article | en_US |
dc.identifier.scopus | 2-s2.0-85117332243 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85117332243 | - |
dc.contributor.affiliation | Algebra and Mathematical Logic | en_US |
dc.description.rank | M51 | en_US |
dc.relation.firstpage | 183 | en_US |
dc.relation.lastpage | 190 | en_US |
dc.relation.volume | 73 | en_US |
dc.relation.issue | 3 | en_US |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Algebra and Mathematical Logic | - |
crisitem.author.orcid | 0000-0002-6545-421X | - |
Appears in Collections: | Research outputs |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.