Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1234
DC FieldValueLanguage
dc.contributor.authorRoslavcev, Majaen_US
dc.date.accessioned2022-09-29T16:20:46Z-
dc.date.available2022-09-29T16:20:46Z-
dc.date.issued2021-01-01-
dc.identifier.issn00255165en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1234-
dc.description.abstractLet V be a valuation ring such that dim(V ) = 0 and the annihilator of each element in V is finitely generated. In this paper it is proved that if I is a finitely generated ideal in the polynomial ring V [X], then there is a Gröbner basis for I. Also, an example of a zero-dimensional non-Noetherian valuation ring RM is presented, together with an example of finding a Gröbner basis for a certain ideal in a polynomial ring RM [X].en_US
dc.relation.ispartofMatematicki Vesniken_US
dc.subjectGröbner basisen_US
dc.subjectValuation ringen_US
dc.subjectZero-dimensional ringen_US
dc.titleGröbner bases for ideals in univariate polynomial rings over valuation ringsen_US
dc.typeArticleen_US
dc.identifier.scopus2-s2.0-85117332243-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85117332243-
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.description.rankM51en_US
dc.relation.firstpage183en_US
dc.relation.lastpage190en_US
dc.relation.volume73en_US
dc.relation.issue3en_US
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.orcid0000-0002-6545-421X-
Appears in Collections:Research outputs
Show simple item record

Page view(s)

21
checked on Dec 25, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.