Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1164
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Delić, Aleksandra | en_US |
dc.contributor.author | Hodžić, Sandra | en_US |
dc.contributor.author | Jovanović, Boško S. | en_US |
dc.date.accessioned | 2022-09-23T17:08:42Z | - |
dc.date.available | 2022-09-23T17:08:42Z | - |
dc.date.issued | 2016-01-01 | - |
dc.identifier.issn | 00255165 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1164 | - |
dc.description.abstract | An implicit finite-difference scheme for numerical approximation of an initialboundary value problem with an interface for a two-dimensional subdiffusion equation with variable coefficients is proposed. Its stability is investigated and the corresponding convergence rate estimate is obtained. In a special case an efficient factorized scheme is proposed and investigated. | en |
dc.relation.ispartof | Matematicki Vesnik | en |
dc.subject | Convergence rate | en |
dc.subject | Factorized scheme | en |
dc.subject | Finite differences | en |
dc.subject | Fractional derivatives | en |
dc.subject | Interface problem | en |
dc.subject | Stability | en |
dc.title | Difference scheme for an interface problem for subdiffusion equation | en_US |
dc.type | Article | en_US |
dc.identifier.scopus | 2-s2.0-84991294621 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84991294621 | - |
dc.contributor.affiliation | Numerical Mathematics and Optimization | en_US |
dc.relation.firstpage | 298 | en |
dc.relation.lastpage | 314 | en |
dc.relation.volume | 68 | en |
dc.relation.issue | 4 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Numerical Mathematics and Optimization | - |
crisitem.author.orcid | 0000-0002-7728-4342 | - |
Appears in Collections: | Research outputs |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.