Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1161
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Delić, Aleksandra | en_US |
dc.date.accessioned | 2022-09-23T17:08:41Z | - |
dc.date.available | 2022-09-23T17:08:41Z | - |
dc.date.issued | 2013-11-07 | - |
dc.identifier.isbn | 9783642415142 | - |
dc.identifier.issn | 03029743 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1161 | - |
dc.description.abstract | In this paper we consider finite-difference scheme for the time-fractional diffusion equation with Caputo fractional derivative of order α ∈ (0,1) with the coefficient at the time derivative containing Dirac delta distribution. © 2013 Springer-Verlag. | en |
dc.relation.ispartof | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | en_US |
dc.subject | Boundary value problem | en |
dc.subject | Dirac distribution | en |
dc.subject | Finite difference method | en |
dc.subject | Fractional derivative | en |
dc.title | A finite difference approach for the time-fractional diffusion equation with concentrated capacity | en_US |
dc.type | Conference Paper | en_US |
dc.relation.publication | International Conference on Numerical Analysis and Its Applications NAA 2012 | en_US |
dc.identifier.doi | 10.1007/978-3-642-41515-9_24 | - |
dc.identifier.scopus | 2-s2.0-84886844568 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84886844568 | - |
dc.contributor.affiliation | Numerical Mathematics and Optimization | en_US |
dc.relation.firstpage | 231 | en_US |
dc.relation.lastpage | 238 | en_US |
dc.relation.volume | 8236 LNCS | en_US |
item.fulltext | No Fulltext | - |
item.openairetype | Conference Paper | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Numerical Mathematics and Optimization | - |
crisitem.author.orcid | 0000-0002-7728-4342 | - |
Appears in Collections: | Research outputs |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.