Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1154
DC FieldValueLanguage
dc.contributor.authorDelić, Aleksandraen_US
dc.contributor.authorJovanović, Boško S.en_US
dc.contributor.authorŽivanović, Sandraen_US
dc.date.accessioned2022-09-23T17:08:39Z-
dc.date.available2022-09-23T17:08:39Z-
dc.date.issued2020-10-01-
dc.identifier.issn16094840en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1154-
dc.description.abstractWe consider a class of a generalized time-fractional telegraph equations. The existence of a weak solution of the corresponding initial-boundary value problem has been proved. A finite difference scheme approximating the problem is proposed, and its stability is proved. An estimate for the rate of convergence, in special discrete energetic Sobolev's norm, is obtained. The theoretical results are confirmed by numerical examples.en
dc.relation.ispartofComputational Methods in Applied Mathematicsen
dc.subjectError boundsen
dc.subjectFinite difference methodsen
dc.subjectFractional derivativeen
dc.subjectTelegraph equationen
dc.titleFinite difference approximation of a generalized time-fractional telegraph equationen_US
dc.typeArticleen_US
dc.identifier.doi10.1515/cmam-2018-0291-
dc.identifier.scopus2-s2.0-85071601859-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85071601859-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.firstpage595en
dc.relation.lastpage607en
dc.relation.volume20en
dc.relation.issue4en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-7728-4342-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

6
checked on Nov 8, 2024

Page view(s)

7
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.