Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1154
DC FieldValueLanguage
dc.contributor.authorDelić, Aleksandraen_US
dc.contributor.authorJovanović, Boško S.en_US
dc.contributor.authorŽivanović, Sandraen_US
dc.date.accessioned2022-09-23T17:08:39Z-
dc.date.available2022-09-23T17:08:39Z-
dc.date.issued2020-10-01-
dc.identifier.issn16094840en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1154-
dc.description.abstractWe consider a class of a generalized time-fractional telegraph equations. The existence of a weak solution of the corresponding initial-boundary value problem has been proved. A finite difference scheme approximating the problem is proposed, and its stability is proved. An estimate for the rate of convergence, in special discrete energetic Sobolev's norm, is obtained. The theoretical results are confirmed by numerical examples.en_US
dc.language.isoenen_US
dc.publisherDe Gruyteren_US
dc.relation.ispartofComputational Methods in Applied Mathematicsen_US
dc.subjectError boundsen_US
dc.subjectFinite difference methodsen_US
dc.subjectFractional derivativeen_US
dc.subjectTelegraph equationen_US
dc.titleFinite difference approximation of a generalized time-fractional telegraph equationen_US
dc.typeArticleen_US
dc.identifier.doi10.1515/cmam-2018-0291-
dc.identifier.scopus2-s2.0-85071601859-
dc.identifier.isi000584317300002-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85071601859-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.issn1609-4840en_US
dc.description.rankM22en_US
dc.relation.firstpage595en_US
dc.relation.lastpage607en_US
dc.relation.volume20en_US
dc.relation.issue4en_US
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-7728-4342-
crisitem.author.orcid0000-0002-0576-6916-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

8
checked on Jun 12, 2025

Page view(s)

8
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.