Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1143
DC FieldValueLanguage
dc.contributor.authorKadelburg, Zoranen_US
dc.contributor.authorDukić, Dušanen_US
dc.contributor.authorLukić, Milivojeen_US
dc.contributor.authorMatić, Ivanen_US
dc.date.accessioned2022-09-23T15:40:37Z-
dc.date.available2022-09-23T15:40:37Z-
dc.date.issued2005-01-01-
dc.identifier.issn14514966en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1143-
dc.description.abstractThree classical general inequalities—those of Karamata, Schur and Muirhead—are proved in this article. They can be used in proving other inequalities, particularly those appearing as problems in mathematical competitions, including International Mathematical Olympiads. Some problems of this kind are given as examples. Several related inequalities—those of Petrović, Steffensen and Szegö—are treated, as well.en
dc.relation.ispartofTeaching of Mathematicsen
dc.subjectDivided differenceen
dc.subjectKaramata’s inequalityen
dc.subjectMuirhead’s inequalityen
dc.subjectPetrović’s inequalityen
dc.subjectRelation of majorizationen
dc.subjectSchur’s inequalityen
dc.subjectSteffensen’s inequalityen
dc.titleInequalities of Karamata, Schur and Muirhead, and some applicationsen_US
dc.typeArticleen_US
dc.identifier.scopus2-s2.0-77952556419-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/77952556419-
dc.relation.firstpage31en
dc.relation.lastpage45en
dc.relation.volume8en
dc.relation.issue1en
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0001-9103-713X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

39
checked on Apr 21, 2025

Page view(s)

106
checked on Jan 19, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.