Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1141
DC FieldValueLanguage
dc.contributor.authorKadelburg, Zoranen_US
dc.contributor.authorMarjanović, Milosav M.en_US
dc.date.accessioned2022-09-23T15:40:36Z-
dc.date.available2022-09-23T15:40:36Z-
dc.date.issued2005-01-01-
dc.identifier.issn14514966en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1141-
dc.description.abstractBy the use of convenient metrics, the ordered set of natural numbers plus an ideal element and the partially ordered set of all partitions of an interval plus an ideal element are converted into metric spaces. Thus, the three different types of limit, arising in classical analysis, are reduced to the same model of the limit of a function at a point. Then, the theorem on interchange of iterated limits, valid under the condition that one of the iterated limits exists and the other one exists uniformly, is used to derive a long sequence of statements of that type that are commonly present in the courses of classical analysis. All apparently varied conditions accompanying such statements are, then, unmasked and reduced to one and the same: one iterated limit exists and the other one exists uniformly.en
dc.relation.ispartofTeaching of Mathematicsen
dc.subjectDefinite integral as a limiten
dc.subjectInterchange of two limitsen
dc.subjectUniform convergenceen
dc.titleInterchanging two limitsen_US
dc.typeArticleen_US
dc.identifier.scopus2-s2.0-84962824412-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84962824412-
dc.relation.firstpage15en
dc.relation.lastpage29en
dc.relation.volume8en
dc.relation.issue1en
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.orcid0000-0001-9103-713X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

8
checked on Dec 18, 2024

Page view(s)

12
checked on Dec 24, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.