Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1135
DC FieldValueLanguage
dc.contributor.authorKadelburg, Zoranen_US
dc.contributor.authorRadenović, Stojanen_US
dc.contributor.authorRakočević, Vladimiren_US
dc.date.accessioned2022-09-23T15:40:36Z-
dc.date.available2022-09-23T15:40:36Z-
dc.date.issued2009-11-01-
dc.identifier.issn08939659en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1135-
dc.description.abstractRecently, D. Ilić and V. Rakočević [D. Ilić, V. Rakočević, Quasi-contraction on a cone metric space, Appl. Math. Lett. (2008) doi:10.1016/j.aml.2008.08.011] proved a fixed point theorem for quasi-contractive mappings in cone metric spaces when the underlying cone is normal. The aim of this paper is to prove this and some related results without using the normality condition. © 2009 Elsevier Ltd. All rights reserved.en
dc.relation.ispartofApplied Mathematics Lettersen
dc.subjectCone metric spaceen
dc.subjectFixed pointen
dc.subjectNormal and non-normal coneen
dc.subjectOrbiten
dc.subjectQuasi-contractionen
dc.titleRemarks on "Quasi-contraction on a cone metric space"en_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.aml.2009.06.003-
dc.identifier.scopus2-s2.0-69249210515-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/69249210515-
dc.relation.firstpage1674en
dc.relation.lastpage1679en
dc.relation.volume22en
dc.relation.issue11en
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.orcid0000-0001-9103-713X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

92
checked on Dec 20, 2024

Page view(s)

12
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.