Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1132
DC FieldValueLanguage
dc.contributor.authorKadelburg, Zoranen_US
dc.contributor.authorRadenović, Stojanen_US
dc.contributor.authorRakočević, Vladimiren_US
dc.date.accessioned2022-09-23T15:40:35Z-
dc.date.available2022-09-23T15:40:35Z-
dc.date.issued2011-03-01-
dc.identifier.issn08939659en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1132-
dc.description.abstractIn the present work, using Minkowski functionals in topological vector spaces, we establish the equivalence between some fixed point results in metric and in (topological vector space) cone metric spaces. Thus, a lot of results in the cone metric setting can be directly obtained from their metric counterparts. In particular, a common fixed point theorem for f-quasicontractions is obtained. Our approach is even easier than that of Du [Wei-Shih Du, A note on cone metric fixed point theory and its equivalence, Nonlinear Anal. 72 (2010) 22592261] where similar conclusions were obtained using scalarization functions. © 2010 Elsevier Ltd. All rights reserved.en
dc.relation.ispartofApplied Mathematics Lettersen_US
dc.subjectCone metric spaceen
dc.subjectFixed pointen
dc.titleA note on the equivalence of some metric and cone metric fixed point resultsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.aml.2010.10.030-
dc.identifier.scopus2-s2.0-78649939553-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/78649939553-
dc.relation.firstpage370en_US
dc.relation.lastpage374en_US
dc.relation.volume24en_US
dc.relation.issue3en_US
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.orcid0000-0001-9103-713X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

136
checked on Dec 19, 2024

Page view(s)

20
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.