Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1131
DC FieldValueLanguage
dc.contributor.authorKadelburg, Zoranen_US
dc.contributor.authorRadenović, Stojanen_US
dc.contributor.authorRosić, B.en_US
dc.date.accessioned2022-09-23T15:40:35Z-
dc.date.available2022-09-23T15:40:35Z-
dc.date.issued2009-11-24-
dc.identifier.issn16871820en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1131-
dc.description.abstractA lot of authors have proved various common fixed-point results for pairs of self-mappings under strict contractive conditions in metric spaces. In the case of cone metric spaces, fixed point results are usually proved under assumption that the cone is normal. In the present paper we prove common fixed point results under strict contractive conditions in cone metric spaces using only the assumption that the cone interior is nonempty. We modify the definition of property (E.A), introduced recently in the work by Aamri and Moutawakil (2002), and use it instead of usual assumptions about commutativity or compatibility of the given pair. Examples show that the obtained results are proper extensions of the existing ones. Copyright © 2009 Z. Kadelburg et al.en
dc.relation.ispartofFixed Point Theory and Applicationsen_US
dc.titleStrict contractive conditions and common fixed point theorems in cone metric spacesen_US
dc.typeArticleen_US
dc.identifier.doi10.1155/2009/173838-
dc.identifier.scopus2-s2.0-70449704262-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/70449704262-
dc.relation.volume2009en_US
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.orcid0000-0001-9103-713X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

30
checked on Dec 20, 2024

Page view(s)

10
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.