Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1128
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Marjanović, Milosav M. | en_US |
dc.contributor.author | Kadelburg, Zoran | en_US |
dc.date.accessioned | 2022-09-23T15:40:35Z | - |
dc.date.available | 2022-09-23T15:40:35Z | - |
dc.date.issued | 2007-01-01 | - |
dc.identifier.issn | 14514966 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1128 | - |
dc.description.abstract | Interrelating inequalities by proving that one of them is a specific case of others, makes their proofs transparent and often easier. Thus, we derive here Chebyshev’s inequality from two inequalities related to convex combinations (and also having some interest in themselves). | en |
dc.relation.ispartof | Teaching of Mathematics | en |
dc.subject | Chebyshev’s inequality | en |
dc.subject | Convex combinations | en |
dc.subject | Relation of majorization | en |
dc.title | A proof of Chebyshev’s inequality | en_US |
dc.type | Article | en_US |
dc.identifier.scopus | 2-s2.0-84996484844 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84996484844 | - |
dc.relation.firstpage | 107 | en |
dc.relation.lastpage | 108 | en |
dc.relation.volume | 10 | en |
dc.relation.issue | 2 | en |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | none | - |
crisitem.author.orcid | 0000-0001-9103-713X | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
6
checked on Mar 29, 2025
Page view(s)
38
checked on Jan 19, 2025
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.