Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1128
DC FieldValueLanguage
dc.contributor.authorMarjanović, Milosav M.en_US
dc.contributor.authorKadelburg, Zoranen_US
dc.date.accessioned2022-09-23T15:40:35Z-
dc.date.available2022-09-23T15:40:35Z-
dc.date.issued2007-01-01-
dc.identifier.issn14514966en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1128-
dc.description.abstractInterrelating inequalities by proving that one of them is a specific case of others, makes their proofs transparent and often easier. Thus, we derive here Chebyshev’s inequality from two inequalities related to convex combinations (and also having some interest in themselves).en
dc.relation.ispartofTeaching of Mathematicsen
dc.subjectChebyshev’s inequalityen
dc.subjectConvex combinationsen
dc.subjectRelation of majorizationen
dc.titleA proof of Chebyshev’s inequalityen_US
dc.typeArticleen_US
dc.identifier.scopus2-s2.0-84996484844-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84996484844-
dc.relation.firstpage107en
dc.relation.lastpage108en
dc.relation.volume10en
dc.relation.issue2en
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.orcid0000-0001-9103-713X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

6
checked on Dec 24, 2024

Page view(s)

38
checked on Dec 24, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.