Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1121
DC FieldValueLanguage
dc.contributor.authorNashine, Hemant Kumaren_US
dc.contributor.authorKadelburg, Zoranen_US
dc.contributor.authorRadenović, Stojanen_US
dc.date.accessioned2022-09-23T15:40:34Z-
dc.date.available2022-09-23T15:40:34Z-
dc.date.issued2013-05-01-
dc.identifier.issn08957177en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1121-
dc.description.abstractCommon fixed point theorems for T-weakly isotone increasing mappings satisfying a generalized contractive type condition under a continuous function φ : [0, + ∞) →[0, + ∞) with φ (t) < t for each t> 0 and φ (0)= 0 in complete ordered partial metric spaces are proved. To illustrate our results and to distinguish them from the existing ones, we equip the paper with examples. © 2011 Elsevier Ltd.en
dc.relation.ispartofMathematical and Computer Modellingen
dc.subjectCommon fixed pointen
dc.subjectFixed pointen
dc.subjectPartial metric spaceen
dc.subjectPartially ordered seten
dc.subjectWeakly increasing mappingen
dc.subjectWeakly isotone increasing mappingsen
dc.titleCommon fixed point theorems for weakly isotone increasing mappings in ordered partial metric spacesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.mcm.2011.12.019-
dc.identifier.scopus2-s2.0-84875663996-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84875663996-
dc.relation.firstpage2355en
dc.relation.lastpage2365en
dc.relation.volume57en
dc.relation.issue9-10en
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.orcid0000-0001-9103-713X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

46
checked on Dec 21, 2024

Page view(s)

7
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.