Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1121
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Nashine, Hemant Kumar | en_US |
dc.contributor.author | Kadelburg, Zoran | en_US |
dc.contributor.author | Radenović, Stojan | en_US |
dc.date.accessioned | 2022-09-23T15:40:34Z | - |
dc.date.available | 2022-09-23T15:40:34Z | - |
dc.date.issued | 2013-05-01 | - |
dc.identifier.issn | 08957177 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1121 | - |
dc.description.abstract | Common fixed point theorems for T-weakly isotone increasing mappings satisfying a generalized contractive type condition under a continuous function φ : [0, + ∞) →[0, + ∞) with φ (t) < t for each t> 0 and φ (0)= 0 in complete ordered partial metric spaces are proved. To illustrate our results and to distinguish them from the existing ones, we equip the paper with examples. © 2011 Elsevier Ltd. | en |
dc.relation.ispartof | Mathematical and Computer Modelling | en |
dc.subject | Common fixed point | en |
dc.subject | Fixed point | en |
dc.subject | Partial metric space | en |
dc.subject | Partially ordered set | en |
dc.subject | Weakly increasing mapping | en |
dc.subject | Weakly isotone increasing mappings | en |
dc.title | Common fixed point theorems for weakly isotone increasing mappings in ordered partial metric spaces | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.mcm.2011.12.019 | - |
dc.identifier.scopus | 2-s2.0-84875663996 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84875663996 | - |
dc.relation.firstpage | 2355 | en |
dc.relation.lastpage | 2365 | en |
dc.relation.volume | 57 | en |
dc.relation.issue | 9-10 | en |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | none | - |
item.openairetype | Article | - |
crisitem.author.orcid | 0000-0001-9103-713X | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
46
checked on Dec 21, 2024
Page view(s)
7
checked on Dec 24, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.