Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1117
DC FieldValueLanguage
dc.contributor.authorAbbas, Mujahiden_US
dc.contributor.authorKadelburg, Zoranen_US
dc.contributor.authorSahu, D. R.en_US
dc.date.accessioned2022-09-23T15:40:34Z-
dc.date.available2022-09-23T15:40:34Z-
dc.date.issued2012-02-01-
dc.identifier.issn08957177en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1117-
dc.description.abstractThe purpose of this paper is to investigate the demiclosedness principle, the existence theorem, and convergence theorems in CAT(0) spaces for a class of mappings which is essentially wider than that of asymptotically nonexpansive mappings. Our results generalize, extend and unify the corresponding results of Dhompongsa and Panyanak [S. Dhompongsa, B. Panyanak, On ▲-convergence theorems in CAT(0) spaces, Comput. Math. Appl., 56 (2008) 2572-2579], Osilike and Aniagbosor [M.O. Osilike, S.C. Aniagbosor, Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings, Math. Computer Model., 32 (2000), 1181-1191], Sahu and Beg [D.R. Sahu, I. Beg, Weak and strong convergence for fixed points of nearly asymptotically non-expansive mappings, Internat. J. Modern Math., 3(2) (2008), 135-151]. © 2011 Elsevier Ltd.en
dc.relation.ispartofMathematical and Computer Modellingen
dc.subjectCAT(0) spaceen
dc.subjectFixed pointen
dc.subjectIteration processen
dc.subjectNearly asymptotically quasi-nonexpansive mappingsen
dc.titleFixed point theorems for Lipschitzian type mappings in CAT(0) spacesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.mcm.2011.10.019-
dc.identifier.scopus2-s2.0-84855187322-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84855187322-
dc.relation.firstpage1418en
dc.relation.lastpage1427en
dc.relation.volume55en
dc.relation.issue3-4en
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.orcid0000-0001-9103-713X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

24
checked on Dec 20, 2024

Page view(s)

13
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.