Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1101
DC FieldValueLanguage
dc.contributor.authorHussain, N.en_US
dc.contributor.authorNashine, H. K.en_US
dc.contributor.authorKadelburg, Zoranen_US
dc.contributor.authorAlsulami, Saud M.en_US
dc.date.accessioned2022-09-23T15:40:32Z-
dc.date.available2022-09-23T15:40:32Z-
dc.date.issued2012-01-01-
dc.identifier.issn10255834en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1101-
dc.description.abstractThe aim of this work is to extend the notion of weakly isotone increasing mappings to multivalued and present common endpoint theorems for T-weakly isotone increasing multivalued mappings satisfying generalized (ψ, φ)-weak contractive as well as almost contractive inequalities in complete partially ordered metric spaces. Examples are given in support of the new results obtained. © 2012 Hussain et al.; licensee Springer.en
dc.relation.ispartofJournal of Inequalities and Applicationsen
dc.subjectCommon endpointen
dc.subjectControl functionen
dc.subjectEndpointen
dc.subjectMultivalued mappingen
dc.subjectPartial orderingen
dc.subjectWeak contractive inequalitiesen
dc.subjectWeakly isotone increasing mappingsen
dc.titleWeakly isotone increasing mappings and endpoints in partially ordered metric spacesen_US
dc.typeArticleen_US
dc.identifier.doi10.1186/1029-242X-2012-232-
dc.identifier.scopus2-s2.0-84879352293-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84879352293-
dc.relation.volume2012en
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.orcid0000-0001-9103-713X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

8
checked on Dec 18, 2024

Page view(s)

6
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.