Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/10
DC FieldValueLanguage
dc.contributor.authorAntić, Miroslavaen_US
dc.contributor.authorDillen, Frankien_US
dc.contributor.authorSchoels, Kristofen_US
dc.contributor.authorVrancken, Lucen_US
dc.date.accessioned2022-08-06T14:49:06Z-
dc.date.available2022-08-06T14:49:06Z-
dc.date.issued2014-01-01-
dc.identifier.issn13406116en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/10-
dc.description.abstractIn affine differential geometry, Calabi discovered how to associate a new hyperbolic affine hypersphere with two hyperbolic affine hyperspheres. This was later generalized by Dillen and Vrancken in order to obtain a large class of examples of equiaffine homogeneous affine hypersurfaces. Note that the constructions defined above remain valid if one of the affine hyperspheres is a point. In this paper we consider the converse question: how can we determine, given properties of the difference tensor K and the affine shape operator S, whether a given hypersurface can be decomposed as a generalized Calabi product of an affine sphere and a point? © 2014 Faculty of Mathematics, Kyushu University.en
dc.relation.ispartofKyushu Journal of Mathematicsen_US
dc.subjectAffine hyperspheresen
dc.subjectCalabi producten
dc.titleDecomposable affine hypersurfacesen_US
dc.typeArticleen_US
dc.identifier.doi/10.2206/kyushujm.68.093-
dc.identifier.scopus2-s2.0-84901588931-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84901588931-
dc.contributor.affiliationGeometryen_US
dc.relation.firstpage93en_US
dc.relation.lastpage103en_US
dc.relation.volume68en_US
dc.relation.issue1en_US
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-2111-7174-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

14
checked on Nov 8, 2024

Page view(s)

15
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.