Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1078
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Nashine, Hemant Kumar | en_US |
dc.contributor.author | Kadelburg, Zoran | en_US |
dc.date.accessioned | 2022-09-23T15:40:29Z | - |
dc.date.available | 2022-09-23T15:40:29Z | - |
dc.date.issued | 2014-02-10 | - |
dc.identifier.issn | 03545180 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1078 | - |
dc.description.abstract | In this paper, we will present some fixed point results for mappings which satisfy cyclic weaker (ψ 0 φ)-contractions and cyclic weaker (ψ, φ)-contractions in 0-complete partial metric spaces. Our results generalize or improve many recent fixed point theorems in the literature. Examples are given to support the usability of our results. | en |
dc.relation.ispartof | Filomat | en |
dc.subject | Cyclic weaker (ψ O φ)-contraction | en |
dc.subject | Cyclic weaker (ψ, φ)-contraction | en |
dc.subject | Fixed point theory | en |
dc.subject | Partial metric space | en |
dc.subject | Weaker Meir-Keeler function | en |
dc.title | Fixed point theorems using cyclic weaker Meir-Keeler functions in partial metric spaces | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.2298/FIL1401073N | - |
dc.identifier.scopus | 2-s2.0-84893214670 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84893214670 | - |
dc.relation.firstpage | 73 | en |
dc.relation.lastpage | 83 | en |
dc.relation.volume | 28 | en |
dc.relation.issue | 1 | en |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | none | - |
item.openairetype | Article | - |
crisitem.author.orcid | 0000-0001-9103-713X | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
5
checked on Dec 18, 2024
Page view(s)
9
checked on Dec 24, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.