Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1077
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ding, Hui Sheng | en_US |
dc.contributor.author | Kadelburg, Zoran | en_US |
dc.contributor.author | Nashine, Hemant Kumar | en_US |
dc.date.accessioned | 2022-09-23T15:40:29Z | - |
dc.date.available | 2022-09-23T15:40:29Z | - |
dc.date.issued | 2012-12-01 | - |
dc.identifier.issn | 16871820 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1077 | - |
dc.description.abstract | In this article, we prove existence results for common fixed points of two or three relatively asymptotically regular mappings satisfying the orbital continuity of one of the involved maps on ordered orbitally complete metric spaces. We furnish suitable examples to demonstrate the validity of the hypotheses of our results. © 2012 Ding et al. | en |
dc.relation.ispartof | Fixed Point Theory and Applications | en |
dc.subject | Asymptotically regular map | en |
dc.subject | Orbital continuity | en |
dc.subject | Orbitally complete metric space | en |
dc.subject | Partially ordered set | en |
dc.subject | Weakly increasing maps | en |
dc.title | Common fixed point theorems for weakly increasing mappings on ordered orbitally complete metric spaces | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1186/1687-1812-2012-85 | - |
dc.identifier.scopus | 2-s2.0-84873850439 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84873850439 | - |
dc.relation.volume | 2012 | en |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | none | - |
item.openairetype | Article | - |
crisitem.author.orcid | 0000-0001-9103-713X | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
11
checked on Dec 18, 2024
Page view(s)
3
checked on Dec 24, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.