Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1076| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Nashine, Hemant Kumar | en_US |
| dc.contributor.author | Kadelburg, Zoran | en_US |
| dc.date.accessioned | 2022-09-23T15:40:29Z | - |
| dc.date.available | 2022-09-23T15:40:29Z | - |
| dc.date.issued | 2013-01-01 | - |
| dc.identifier.issn | 13925113 | en |
| dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1076 | - |
| dc.description.abstract | We introduce a new variant of cyclic contractive mapping in a metric space and originate existence and uniqueness results of fixed points for such mappings. Examples are given to support the usability of our results. After these results, an application to integro-differential equations is given. © Vilnius University, 2013. | en |
| dc.relation.ispartof | Nonlinear Analysis: Modelling and Control | en |
| dc.subject | Cyclic contraction | en |
| dc.subject | Fixed point | en |
| dc.subject | Integro-differential equation | en |
| dc.title | Weaker cyclic (φ, Φ)-contractive mappings with an application to integro-differential equations | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.15388/na.18.4.13971 | - |
| dc.identifier.scopus | 2-s2.0-84884682911 | - |
| dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84884682911 | - |
| dc.relation.firstpage | 427 | en |
| dc.relation.lastpage | 443 | en |
| dc.relation.volume | 18 | en |
| dc.relation.issue | 4 | en |
| item.openairetype | Article | - |
| item.fulltext | No Fulltext | - |
| item.cerifentitytype | Publications | - |
| item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
| item.grantfulltext | none | - |
| crisitem.author.dept | Mathematical Analysis | - |
| crisitem.author.orcid | 0000-0001-9103-713X | - |
| Appears in Collections: | Research outputs | |
SCOPUSTM
Citations
3
checked on Nov 17, 2025
Page view(s)
13
checked on Jan 19, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.