Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1072
DC FieldValueLanguage
dc.contributor.authorNashine, Hemant Kumaren_US
dc.contributor.authorAgarwal, Ravi P.en_US
dc.contributor.authorKadelburg, Zoranen_US
dc.date.accessioned2022-09-23T15:40:28Z-
dc.date.available2022-09-23T15:40:28Z-
dc.date.issued2018-01-01-
dc.identifier.issn15787303en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1072-
dc.description.abstractIn this paper, we propose some fixed point results for a new type of contractive multivalued operators in the setting of H+-metric spaces which are further applied to get results on data dependence and well-posed multivalued problems. By doing this, our work generalizes Nadler’s, Kikkawa and Suzuki’s, and some other fixed point theorems. The theorems provided allow upgrading of Pathak and Shahzad’s and Popescu’s results which is shown by an example. A homotopy result is presented at the end as an application of our main theorem.en
dc.relation.ispartofRevista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicasen
dc.subjectFixed pointen
dc.subjectHomotopyen
dc.subjectMultivalued mappingen
dc.subjectPompeiu–Hausdorff metricen
dc.titleFixed point, data dependence and well-posed problems on H<sup>+</sup> -metric spaces and their application to homotopy theoryen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s13398-016-0363-6-
dc.identifier.scopus2-s2.0-85040129829-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85040129829-
dc.relation.firstpage1en
dc.relation.lastpage16en
dc.relation.volume112en
dc.relation.issue1en
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.orcid0000-0001-9103-713X-
Appears in Collections:Research outputs
Show simple item record

Page view(s)

19
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.